ZL50022
Data Sheet
PBGA Pin
Number
LQFPPin
Number
Pin Name
Description
M13
41
MOT_INTEL
Motorola_Intel (5 V-Tolerant Input with Enabled Internal
Pull-up)
This pin selects the Motorola or Intel microprocessor interface to
be connected to the device. When this pin is unconnected or
connected to high, Motorola interface is assumed. When this pin is
connected to ground, Intel interface should be used.
P10
G2
43
IRQ
Interrupt (5 V-Tolerant Three-state Output)
This programmable active low output indicates that the internal
operating status of the DPLL has changed. An external pull-up
resistor MUST hold this pin at HIGH level.
211
RESET
Device Reset (5 V-Tolerant Input with Internal Pull-up)
This input (active LOW) puts the device in its reset state that
disables the STio0 - 31 drivers and drives the STOHZ0 - 15
outputs to high. It also preloads registers with default values and
clears all internal counters. To ensure proper reset action, the reset
pin must be low for longer than 1µs. Upon releasing the reset
signal to the device, the first microprocessor access cannot take
place for at least 600µs due to the time required to stabilize the
device and the crystal oscillator from the power-down state. Refer
to Section Section 17.2 on page 47 for details.
3.0 Device Overview
The device has thirty-two ST-BUS/GCI-Bus inputs (STi0 - 31) and thirty-two ST-BUS/GCI-Bus outputs (STio0 - 31).
STio0 - 31 can also be configured as bi-directional pins, in which case STi0 - 31 will be ignored. It is a non-blocking
digital switch with 4096 64 kbps channels and is capable of performing rate conversion between ST-BUS/GCI-Bus
inputs and ST-BUS/GCI-Bus outputs. The ST-BUS/GCI-Bus inputs accept serial input data streams with data rates
of 2.048 Mbps, 4.096 Mbps, 8.192 Mbps and 16.384 Mbps on a per-stream basis. The ST-BUS/GCI-Bus outputs
deliver serial data streams with data rates of 2.048 Mbps, 4.096 Mbps and, 8.192 Mbps and 16.384 Mbps on a
per-stream basis. The device also provides sixteen high impedance control outputs (STOHZ0 - 15) to support the
use of external ST-BUS/GCI-Bus tristate drivers for the first sixteen ST-BUS/GCI-Bus outputs (STio0 -15).
By using Zarlink’s message mode capability, microprocessor data stored in the connection memory can be
broadcast to the output streams on a per-channel basis. This feature is useful for transferring control and status
information for external circuits or other ST-BUS/GCI-Bus devices.
The device uses the ST-BUS/GCI-Bus input frame pulse (FPi) and the ST-BUS/GCI-Bus input clock (CKi) to define
the input frame boundary and timing for sampling the ST-BUS/GCI-Bus input streams with various data rates. The
output data streams will be driven by and have their timing defined by FPi and CKi in Divided Slave mode. In
Multiplied Slave mode, the output data streams will be driven by an internally generated clock, which is multiplied
from CKi internally. In Master mode, the on-chip DPLL will drive the output data streams and provide output clocks
and frame pulses. Refer to Application Note ZLAN-120 for further explanation of the different modes of operation.
When the device is in Master mode, the DPLL is phase-locked to one of four DPLL reference signals, REF0 - 3,
which are sourced by an external 8 kHz, 1.544 MHz, 2.048 MHz, 4.096 MHz, 8.192 MHz, 16.384 MHz or
19.44 MHz reference signal. The on-chip DPLL also offers jitter attenuation, reference switching, reference
monitoring, freerun and holdover functions. The jitter performance exceeds the Stratum 4E specification. The
intrinsic jitter of all output clocks is less than 1 ns (except for the 1.544 MHz output).
20
Zarlink Semiconductor Inc.