欢迎访问ic37.com |
会员登录 免费注册
发布采购

MAR2901FBXXX 参数 Datasheet PDF下载

MAR2901FBXXX图片预览
型号: MAR2901FBXXX
PDF下载: 下载PDF文件 查看货源
内容描述: [Microprocessor,]
分类和应用: 外围集成电路微处理器时钟
文件页数/大小: 13 页 / 261 K
品牌: ZARLINK [ ZARLINK SEMICONDUCTOR INC ]
 浏览型号MAR2901FBXXX的Datasheet PDF文件第1页浏览型号MAR2901FBXXX的Datasheet PDF文件第2页浏览型号MAR2901FBXXX的Datasheet PDF文件第3页浏览型号MAR2901FBXXX的Datasheet PDF文件第4页浏览型号MAR2901FBXXX的Datasheet PDF文件第6页浏览型号MAR2901FBXXX的Datasheet PDF文件第7页浏览型号MAR2901FBXXX的Datasheet PDF文件第8页浏览型号MAR2901FBXXX的Datasheet PDF文件第9页  
MA2901  
In the shift up mode, the RAM3 buffer is enabled and the  
SOURCE OPERANDS & ALU FUNCTION  
RAM0 multiplexer input is enabled. Likewise, in the shift down  
mode, the RAM0 buffer and RAM3 input are enabled. In the no-  
shift mode, both buffers are in the high-impedance state and  
the multiplexer inputs are not selected. The shifter is controlled  
from the I6, I7 and I8 microinstruction inputs as defined in Figure  
4.  
Similarly, the Q register is driven from a 3-input  
multiplexer. In the non-shift mode, the multiplexer enters the  
ALU data into the Q register. In either the shift-up or shift-down  
mode, the multiplexer selects the Q register data appropriately  
shifted up or down. The Q shifter also has two ports; one is  
labeled Q0 and the other is Q3. The operation of these two  
ports is similar to the RAM shifter and is also controlled from I6,  
I7 and I8 as shown in Figure 4.  
The clock input shown in Figure 1 controls the RAM, the Q  
resister and the A and B data latches. When enabled, data is  
clocked into the Q register on the LOW-to-HlGH transition of  
the clock. When the clock input is HIGH, the A and B latches  
are open and will pass whatever data is present at the RAM  
outputs. When the clock input is LOW, the latches are closed  
and will retain the last data entered. If the RAM-EN is enabled  
new data will be written into the RAM file (word) defined by the  
B address field when the clock input is LOW.  
Any one of eight source operand pairs can be selected by  
instruction inputs lo, l1 and I2 for use by the ALU; instruction  
inputs I3, I4, and I5 then control function selection for the ALU -  
five logic and three arithmetic functions. In the arithmetic  
mode, the carry input (Cn) also affects the ALU functions; the  
carry input has no effect on the ‘F’ result in the logic mode.  
These control parameters (I6 - l0 and Cn) are summarised in  
Figure 5 to completely define the ALU/source operand  
functions.  
The ALU functions can also be examined on a task basis:  
that is, add, subtract, AND, OR, and so on. Again, in the  
arithmetic mode, the carry input still affects the result, whereas  
in the logic mode it will not. Figures 6 and 7, respectively,  
define the various logic and arithmetic functions of the ALU;  
both carry states (Cn = 0 / Cn = 1) are defined in the function  
matrices.  
Microcode  
RAM Function  
Q-Reg Function  
Y
RAM Shifter  
RAM RAM  
Q Shifter  
Octal  
Code  
Output  
I
I
I
Shift  
X
X
None  
None  
Load  
None  
None  
F® B  
F® B  
Shift  
None  
X
X
X
Load  
F® Q  
None  
None  
None  
F
Q
0
Q
8
7
6
0
3
3
L
L
L
L
H
H
H
H
L
L
0
1
2
3
4
5
6
7
F
F
A
F
-
F
F
F
X
X
X
X
X
X
X
X
X
X
X
X
L
H
L
H
L
H
H
L
X
X
X
X
Down F/2® B Q/2® Q  
Down F/2® B  
F0  
F
0
IN  
IN  
Q
0
IN  
3
3
3
L
H
H
H
L
H
X
Up  
X
None  
2Q® Q  
None  
Q
0
X
Up  
Up  
2F® B  
2F® B  
IN  
IN  
F
F
3
IN  
3
X
Q
Q
0
0
3
3
3
X = Don't Care. Electrically, the shift pin is a TTL input internally connected to a TRI-STATE output which is in the high-impedance state.  
B = Register addressed by 8 inputs. Up is towards MSB, Down is towards LSB.  
Figure 4: ALU Destination Control  
I
Octal  
0
1
2
0,Q  
Q
3
0,B  
B
4
0,A  
A
5
6
7
D,0  
D
2,1,0  
ALU Source  
/ALU  
Octal  
A,Q  
A+Q  
A,B  
A+B  
D,A  
D + A  
D,Q  
D + Q  
I
Function  
C =L  
n
R plus S  
5,4,3  
0
A+Q+1  
Q-A-1  
A+B+1  
B-A-1  
Q +1  
Q -1  
B + 1  
B - 1  
A + 1  
A - 1  
D + A + 1 D + Q + 1  
D + 1  
-D - 1  
C =H  
n
Cn=L  
A - D1  
Q - D - 1  
1
2
S minus R  
C =H  
Q-A  
A-Q-1  
B-A  
A-B-1  
Q
-Q-1  
B
A
A - D  
D - A -1  
Q - D  
D - Q - 1  
- D  
D - 1  
n
C =L  
- B - 1  
- A - 1  
n
R minus S  
A-Q  
A-B  
- Q  
- B  
- A  
D - A  
D - Q  
D
C =H  
n
3
4
5
6
7
R or S  
R and S  
A
Q
A
B
Q
0
Q
Q
Q
B
0
B
B
B
A
0
A
A
A
D
A
D Q  
V
D
0
0
D
DN  
V
V
V
A L Q  
ANL Q  
A Ñ Q  
A L B  
ANL B  
A Ñ B  
D L A  
DNL A  
D Ñ A  
D L Q  
DNL Q  
D Ñ Q  
RN and S  
R EX-OR S  
R EX NOR S ANÑ QN ANÑ BN  
DNÑ AN  
DNÑ QN  
+ = plus; - = minus; = OR; L = AND; Ñ = EX-OR  
V
Figure 5: Source Operand and ALU Function Matrix  
4
 复制成功!