欢迎访问ic37.com |
会员登录 免费注册
发布采购

X28HC64DI-70 参数 Datasheet PDF下载

X28HC64DI-70图片预览
型号: X28HC64DI-70
PDF下载: 下载PDF文件 查看货源
内容描述: 5伏,可变的字节E2PROM [5 Volt, Byte Alterable E2PROM]
分类和应用: 可编程只读存储器
文件页数/大小: 24 页 / 114 K
品牌: XICOR [ XICOR INC. ]
 浏览型号X28HC64DI-70的Datasheet PDF文件第1页浏览型号X28HC64DI-70的Datasheet PDF文件第2页浏览型号X28HC64DI-70的Datasheet PDF文件第4页浏览型号X28HC64DI-70的Datasheet PDF文件第5页浏览型号X28HC64DI-70的Datasheet PDF文件第6页浏览型号X28HC64DI-70的Datasheet PDF文件第7页浏览型号X28HC64DI-70的Datasheet PDF文件第8页浏览型号X28HC64DI-70的Datasheet PDF文件第9页  
X28HC64
DEVICE OPERATION
Read
Read operations are initiated by both
OE
and
CE
LOW.
The read operation is terminated by either
CE
or
OE
returning HIGH. This two line control architecture elimi-
nates bus contention in a system environment. The data
bus will be in a high impedance state when either
OE
or
CE
is HIGH.
Write
Write operations are initiated when both
CE
and
WE
are
LOW and
OE
is HIGH. The X28HC64 supports both a
CE
and
WE
controlled write cycle. That is, the address
is latched by the falling edge of either
CE
or
WE,
whichever occurs last. Similarly, the data is latched
internally by the rising edge of either
CE
or
WE,
which-
ever occurs first. A byte write operation, once initiated,
will automatically continue to completion, typically within
2ms.
Page Write Operation
The page write feature of the X28HC64 allows the entire
memory to be written in 0.25 seconds. Page write allows
two to sixty-four bytes of data to be consecutively written
to the X28HC64 prior to the commencement of the
internal programming cycle. The host can fetch data
from another device within the system during a page
write operation (change the source address), but the
page address (A
6
through A
12
) for each subsequent
valid write cycle to the part during this operation must be
the same as the initial page address.
The page write mode can be initiated during any write
operation. Following the initial byte write cycle, the host
can write an additional one to sixty-three bytes in the
same manner as the first byte was written. Each succes-
sive byte load cycle, started by the
WE
HIGH to LOW
transition, must begin within 100µs of the falling edge of
the preceding
WE.
If a subsequent
WE
HIGH to LOW
transition is not detected within 100µs, the internal
automatic programming cycle will commence. There is
no page write window limitation. Effectively the page
write window is infinitely wide, so long as the host
continues to access the device within the byte load cycle
time of 100µs.
Write Operation Status Bits
The X28HC64 provides the user two write operation
status bits. These can be used to optimize a system
write cycle time. The status bits are mapped onto the
I/O bus as shown in Figure 1.
Figure 1. Status Bit Assignment
I/O
DP
TB
5
4
3
2
1
0
RESERVED
TOGGLE BIT
DATA POLLING
3857 FHD F11
DATA
Polling (I/O
7
)
The X28HC64 features
DATA
Polling as a method to
indicate to the host system that the byte write or page
write cycle has completed.
DATA
Polling allows a simple
bit test operation to determine the status of the X28HC64,
eliminating additional interrupt inputs or external hard-
ware. During the internal programming cycle, any at-
tempt to read the last byte written will produce the
complement of that data on I/O
7
(i.e. write data = 0xxx
xxxx, read data = 1xxx xxxx). Once the programming
cycle is complete, I/O
7
will reflect true data.
Toggle Bit (I/O
6
)
The X28HC64 also provides another method for deter-
mining when the internal write cycle is complete. During
the internal programming cycle I/O
6
will toggle from
HIGH to LOW and LOW to HIGH on subsequent
attempts to read the device. When the internal cycle is
complete the toggling will cease and the device will be
accessible for additional read or write operations.
3