TMC5160 DATASHEET (Rev. 1.08 / 2018-NOV-19)
8
1.4 Moving and Controlling the Motor
1.4.1 Integrated Motion Controller
The integrated 32 bit motion controller automatically drives the motor to target positions, or
accelerates to target velocities. All motion parameters can be changed on the fly. The motion
controller recalculates immediately. A minimum set of configuration data consists of acceleration and
deceleration values and the maximum motion velocity. A start and stop velocity is supported as well
as a second acceleration and deceleration setting. The integrated motion controller supports
immediate reaction to mechanical reference switches and to the sensorless stall detection stallGuard2.
Benefits are:
Flexible ramp programming
Efficient use of motor torque for acceleration and deceleration allows higher machine throughput
Immediate reaction to stop and stall conditions
1.4.2 STEP/DIR Interface
The motor can optionally be controlled by a step and direction input. In this case, the motion
controller remains unused. Active edges on the STEP input can be rising edges or both rising and
falling edges as controlled by another mode bit (dedge). Using both edges cuts the toggle rate of the
STEP signal in half, which is useful for communication over slow interfaces such as optically isolated
interfaces. On each active edge, the state sampled from the DIR input determines whether to step
forward or back. Each step can be a fullstep or a microstep, in which there are 2, 4, 8, 16, 32, 64, 128,
or 256 microsteps per fullstep. A step impulse with a low state on DIR increases the microstep
counter and a high decreases the counter by an amount controlled by the microstep resolution. An
internal table translates the counter value into the sine and cosine values which control the motor
current for microstepping.
1.5 Automatic Standstill Power Down
An automatic current reduction drastically reduces application power dissipation and cooling
requirements. Modify stand still current, delay time and decay via register settings. Automatic
freewheeling and passive motor braking are provided as an option for stand still. Passive braking
reduces motor standstill power consumption to zero, while still providing effective dampening and
braking! An option for faster detection of standstill is provided for both, ramp generator and STEP/DIR
operation.
STEP
Standstill flag
(stst)
CURRENT
IRUN
IHOLD
t
standstill delay TPOWERDOWN IHOLDDELAY
2^20 / 2^18 clocks power down power down
RMS motor current trace
(faststandstill)
delay time
ramp time
Figure 1.4 Automatic Motor Current Power Down
1.6 stealthChop2 & spreadCycle Driver
stealthChop is a voltage chopper based principle. It especially guarantees that the motor is absolutely
quiet in standstill and in slow motion, except for noise generated by ball bearings. Unlike other
voltage mode choppers, stealthChop2 does not require any configuration. It automatically learns the
best settings during the first motion after power up and further optimizes the settings in subsequent
motions. An initial homing sequence is sufficient for learning. Optionally, initial learning parameters
www.trinamic.com