欢迎访问ic37.com |
会员登录 免费注册
发布采购

NCP1396ADR2G 参数 Datasheet PDF下载

NCP1396ADR2G图片预览
型号: NCP1396ADR2G
PDF下载: 下载PDF文件 查看货源
内容描述: 高性能谐振模式控制器具有高压驱动器 [High Performance Resonant Mode Controller featuring High-Voltage Drivers]
分类和应用: 驱动器高压控制器
文件页数/大小: 25 页 / 492 K
品牌: ONSEMI [ ONSEMI ]
 浏览型号NCP1396ADR2G的Datasheet PDF文件第11页浏览型号NCP1396ADR2G的Datasheet PDF文件第12页浏览型号NCP1396ADR2G的Datasheet PDF文件第13页浏览型号NCP1396ADR2G的Datasheet PDF文件第14页浏览型号NCP1396ADR2G的Datasheet PDF文件第16页浏览型号NCP1396ADR2G的Datasheet PDF文件第17页浏览型号NCP1396ADR2G的Datasheet PDF文件第18页浏览型号NCP1396ADR2G的Datasheet PDF文件第19页  
NCP1396A, NCP1396B  
V
CC  
FMu&Lu  
No variations  
Fmax  
450 kHz  
FB  
+
--  
R1  
11.3 k  
ΔFsw = 300 kHz  
+
R3  
100 k  
R2  
8.7 k  
D1  
2.3 V  
Vref  
0.5 V  
Fmin  
150 kHz  
VFB  
Fmax  
Rfmax  
Fault  
area  
5.3 V  
1.2 V  
ΔVFB = 4.1 V  
0.6 V  
Figure 34. Here a different minimum frequency was  
programmed as well as a maximum frequency  
excursion  
Figure 32. The OPAMP Arrangement Limits the  
VCO Modulation Signal between 0.5 and 2.3 V  
This techniques allows us to detect a fault on the  
converter in case the FB pin cannot rise above 0.6 V (to  
actually close the loop) in less than a duration imposed by  
the programmable timer. Please referto the fault sectionfor  
detailed operation of this mode.  
As shown on Figure 32, the internal dynamics of the  
VCO control voltage will be constrained between 0.5 V  
and 2.3 V, whereas the feedback loop will drive pin 6 (FB)  
between 1.2 V and 5.3 V. If we take the default FB pin  
excursion numbers, 1.2 V = 50 kHz, 5.3 V = 500 kHz, then  
the VCO maximum slope will be:  
Please note that the previous small-signal VCO slope has  
now been reduced to 300 k / 4.1 = 73 kHz / V on Mupper  
and Mlower outputs. This offers a mean to magnify the  
feedback excursion on systems where the load range does  
not generate a wide switchingfrequency excursion. Thanks  
to this option, we will see how it becomes possible to  
observe the feedback level and implement skip cycle at  
light loads. It is important to note that the frequency  
evolution does not have a real linear relationship with the  
feedback voltage. This is due to the deadtime presence  
which stays constant as the switching period changes.  
The selection of the three setting resistors (Fmax, Fmin  
deadtime) requires the usage of the selection charts  
displayed below:  
500 k 50 k  
= 109.7 kHzV  
4.1  
Figures 33 and 34 portray the frequency evolution  
depending on the feedback pin voltage level in a different  
frequency clamp combination.  
650  
V
= 12 V  
CC  
FMu&Lu  
550  
450  
350  
250  
FB = 6.5 V  
DT = 300 ns  
No variations  
Fmax  
500 kHz  
ΔFsw = 450 kHz  
Fmin = 200 kHz  
Fmin  
150  
50  
50 kHz  
VFB  
kHz  
Fmin = 50  
1.5 3.5  
5.5 7.5  
9.5 11.5 13.5 15.5 17.5  
Fault  
area  
5.3 V  
1.2 V  
ΔVFB = 4.1 V  
RFmax (kΩ)  
0.6 V  
Figure 35. Maximum Switching Frequency Resistor  
Selection Depending on the Adopted Minimum  
Switching Frequency  
Figure 33. Maximal Default Excursion, Rt =  
22 kΩ on pin 4 and Rfmax = 1.3 kΩ on pin 2  
http://onsemi.com  
15  
 复制成功!