欢迎访问ic37.com |
会员登录 免费注册
发布采购

MMBT2222A 参数 Datasheet PDF下载

MMBT2222A图片预览
型号: MMBT2222A
PDF下载: 下载PDF文件 查看货源
内容描述: 通用晶体管NPN硅 [General Purpose Transistors NPN Silicon]
分类和应用: 晶体晶体管开关光电二极管IOT
文件页数/大小: 8 页 / 128 K
品牌: ONSEMI [ ON SEMICONDUCTOR ]
 浏览型号MMBT2222A的Datasheet PDF文件第1页浏览型号MMBT2222A的Datasheet PDF文件第2页浏览型号MMBT2222A的Datasheet PDF文件第3页浏览型号MMBT2222A的Datasheet PDF文件第4页浏览型号MMBT2222A的Datasheet PDF文件第5页浏览型号MMBT2222A的Datasheet PDF文件第6页浏览型号MMBT2222A的Datasheet PDF文件第8页  
MMBT2222LT1 MMBT2222ALT1
INFORMATION FOR USING THE SOT–23 SURFACE MOUNT PACKAGE
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS
Surface mount board layout is a critical portion of the total
interface between the board and the package. With the
design. The footprint for the semiconductor packages must
correct pad geometry, the packages will self align when
be the correct size to insure proper solder connection
subjected to a solder reflow process.
0.037
0.95
0.037
0.95
0.079
2.0
0.035
0.9
0.031
0.8
inches
mm
SOT–23
SOT–23 POWER DISSIPATION
The power dissipation of the SOT–23 is a function of the
pad size. This can vary from the minimum pad size for
soldering to a pad size given for maximum power
dissipation. Power dissipation for a surface mount device is
determined by T
J(max)
, the maximum rated junction
temperature of the die, R
θJA
, the thermal resistance from the
device junction to ambient, and the operating temperature,
T
A
. Using the values provided on the data sheet for the
SOT–23 package, P
D
can be calculated as follows:
P
D
=
T
J(max)
– T
A
R
θJA
SOLDERING PRECAUTIONS
The values for the equation are found in the maximum
ratings table on the data sheet. Substituting these values into
the equation for an ambient temperature T
A
of 25°C, one can
calculate the power dissipation of the device which in this
case is 225 milliwatts.
150°C – 25°C
P
D
=
556°C/W
= 225 milliwatts
The 556°C/W for the SOT–23 package assumes the use of
the recommended footprint on a glass epoxy printed circuit
board to achieve a power dissipation of 225 milliwatts.
There are other alternatives to achieving higher power
dissipation from the SOT–23 package. Another alternative
would be to use a ceramic substrate or an aluminum core
board such as Thermal Clad™. Using a board material such
as Thermal Clad, an aluminum core board, the power
dissipation can be doubled using the same footprint.
The melting temperature of solder is higher than the rated
temperature of the device. When the entire device is heated
to a high temperature, failure to complete soldering within
a short time could result in device failure. Therefore, the
following items should always be observed in order to
minimize the thermal stress to which the devices are
subjected.
Always preheat the device.
The delta temperature between the preheat and soldering
should be 100°C or less.*
When preheating and soldering, the temperature of the
leads and the case must not exceed the maximum
temperature ratings as shown on the data sheet. When
using infrared heating with the reflow soldering method,
the difference shall be a maximum of 10°C.
The soldering temperature and time shall not exceed
260°C for more than 10 seconds.
When shifting from preheating to soldering, the maximum
temperature gradient shall be 5°C or less.
After soldering has been completed, the device should be
allowed to cool naturally for at least three minutes.
Gradual cooling should be used as the use of forced
cooling will increase the temperature gradient and result
in latent failure due to mechanical stress.
Mechanical stress or shock should not be applied during
cooling.
* Soldering a device without preheating can cause
excessive thermal shock and stress which can result in
damage to the device.
http://onsemi.com
7