欢迎访问ic37.com |
会员登录 免费注册
发布采购

PIC18LF4320-I/ML 参数 Datasheet PDF下载

PIC18LF4320-I/ML图片预览
型号: PIC18LF4320-I/ML
PDF下载: 下载PDF文件 查看货源
内容描述: 28 /40/ 44引脚高性能,增强型闪存微控制器与10位A / D和纳瓦技术 [28/40/44-Pin High-Performance, Enhanced Flash Microcontrollers with 10-Bit A/D and nanoWatt Technology]
分类和应用: 闪存微控制器和处理器外围集成电路时钟
文件页数/大小: 388 页 / 6899 K
品牌: MICROCHIP [ MICROCHIP ]
 浏览型号PIC18LF4320-I/ML的Datasheet PDF文件第214页浏览型号PIC18LF4320-I/ML的Datasheet PDF文件第215页浏览型号PIC18LF4320-I/ML的Datasheet PDF文件第216页浏览型号PIC18LF4320-I/ML的Datasheet PDF文件第217页浏览型号PIC18LF4320-I/ML的Datasheet PDF文件第219页浏览型号PIC18LF4320-I/ML的Datasheet PDF文件第220页浏览型号PIC18LF4320-I/ML的Datasheet PDF文件第221页浏览型号PIC18LF4320-I/ML的Datasheet PDF文件第222页  
PIC18F2220/2320/4220/4320  
19.1 A/D Acquisition Requirements  
19.2 A/D VREF+ and VREF- References  
For the A/D converter to meet its specified accuracy, the  
Charge Holding Capacitor (CHOLD) must be allowed to  
fully charge to the input channel voltage level. The ana-  
log input model is shown in Figure 19-2. The source  
impedance (RS) and the internal sampling switch (RSS)  
impedance directly affect the time required to charge the  
capacitor CHOLD. The sampling switch (RSS) impedance  
varies over the device voltage (VDD). The source imped-  
ance affects the offset voltage at the analog input (due to  
pin leakage current). The maximum recommended  
impedance for analog sources is 2.5 k. After the  
analog input channel is selected (changed), the channel  
must be sampled for at least the minimum acquisition  
time before starting a conversion.  
If external voltage references are used instead of the  
internal AVDD and AVSS sources, the source imped-  
ance of the VREF+ and VREF- voltage sources must be  
considered. During acquisition, currents supplied by  
these sources are insignificant. However, during con-  
version, the A/D module sinks and sources current  
through the reference sources.  
In order to maintain the A/D accuracy, the voltage ref-  
erence source impedances should be kept low to  
reduce voltage changes. These voltage changes occur  
as reference currents flow through the reference  
source impedance. The maximum recommended  
impedance of the VREF+ and VREF- external  
reference voltage sources is 75.  
Note:  
When the conversion is started, the holding  
capacitor is disconnected from the input pin.  
Note:  
When using external references, the  
source impedance of the external voltage  
references must be less than 75in order  
to achieve the specified ADC resolution. A  
higher reference source impedance will  
increase the ADC offset and gain errors.  
Resistive voltage dividers will not provide a  
low enough source impedance. To ensure  
the best possible ADC performance, exter-  
nal VREF inputs should be buffered with an  
op amp or other low-impedance circuit.  
To calculate the minimum acquisition time,  
Equation 19-1 may be used. This equation assumes  
that 1/2 LSb error is used (1024 steps for the A/D). The  
1/2 LSb error is the maximum error allowed for the A/D  
to meet its specified resolution.  
Example 19-1 shows the calculation of the minimum  
required acquisition time TACQ. This calculation is based  
on the following application system assumptions:  
CHOLD  
RS  
Conversion Error  
VDD  
Temperature  
VHOLD  
=
=
=
=
=
120 pF  
2.5 kΩ  
1/2 LSb  
5V Rss = 7 kΩ  
50°C (system max.)  
0V @ time = 0  
EQUATION 19-1: ACQUISITION TIME  
TACQ  
=
=
Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient  
TAMP + TC + TCOFF  
EQUATION 19-2: MINIMUM A/D HOLDING CAPACITOR  
VHOLD  
or  
=
(VREF – (VREF/2048)) • (1 – e(-Tc/CHOLD(RIC + RSS + RS))  
)
TC  
=
-(CHOLD)(RIC + RSS + RS) ln(1/2048)  
EXAMPLE 19-1:  
CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME  
TACQ  
TAMP  
TCOFF  
=
=
=
TAMP + TC + TCOFF  
5 µs  
(Temp – 25°C)(0.05 µs/°C)  
(50°C – 25°C)(0.05 µs/°C)  
1.25 µs  
Temperature coefficient is only required for temperatures > 25°C. Below 25°C, TCOFF = 0 µs.  
TC  
-(CHOLD)(RIC + RSS + RS) ln(1/2047) µs  
-(120 pF) (1 k+ 7 k+ 2.5 k) ln(0.0004883) µs  
9.61 µs  
TACQ  
=
5 µs + 1.25 µs + 9.61 µs  
12.86 µs  
DS39599C-page 216  
2003 Microchip Technology Inc.  
 复制成功!