欢迎访问ic37.com |
会员登录 免费注册
发布采购

MCP1702T-3302E/MB 参数 Datasheet PDF下载

MCP1702T-3302E/MB图片预览
型号: MCP1702T-3302E/MB
PDF下载: 下载PDF文件 查看货源
内容描述: 250毫安低静态电流LDO稳压器 [250 mA Low Quiescent Current LDO Regulator]
分类和应用: 线性稳压器IC调节器电源电路输出元件PC
文件页数/大小: 26 页 / 777 K
品牌: MICROCHIP [ MICROCHIP TECHNOLOGY ]
 浏览型号MCP1702T-3302E/MB的Datasheet PDF文件第1页浏览型号MCP1702T-3302E/MB的Datasheet PDF文件第2页浏览型号MCP1702T-3302E/MB的Datasheet PDF文件第4页浏览型号MCP1702T-3302E/MB的Datasheet PDF文件第5页浏览型号MCP1702T-3302E/MB的Datasheet PDF文件第6页浏览型号MCP1702T-3302E/MB的Datasheet PDF文件第7页浏览型号MCP1702T-3302E/MB的Datasheet PDF文件第8页浏览型号MCP1702T-3302E/MB的Datasheet PDF文件第9页  
MCP1702
1.0
ELECTRICAL
CHARACTERISTICS
† Notice:
Stresses above those listed under “Maximum Rat-
ings” may cause permanent damage to the device. This is a
stress rating only and functional operation of the device at
those or any other conditions above those indicated in the
operational listings of this specification is not implied. Expo-
sure to maximum rating conditions for extended periods may
affect device reliability.
Absolute Maximum Ratings †
V
DD
...............................................................................+14.5V
All inputs and outputs w.r.t. .............(V
SS
-0.3V) to (V
IN
+0.3V)
Peak Output Current ...................................................500 mA
Storage temperature .....................................-65°C to +150°C
Maximum Junction Temperature ................................... 150°C
Operating Junction Temperature...................-40°C to +125°C
ESD protection on all pins (HBM;MM)...............
4 kV;
400V
DC CHARACTERISTICS
Electrical Specifications:
Unless otherwise specified, all limits are established for V
IN
= V
OUT(MAX)
+ V
DROPOUT(MAX)
I
LOAD
= 100 µA, C
OUT
= 1 µF (X7R), C
IN
= 1 µF (X7R), T
A
= +25°C.
Boldface
type applies for junction temperatures, T
J
of -40°C to +125°C.
Parameters
Input / Output Characteristics
Input Operating Voltage
Input Quiescent Current
Maximum Output Current
V
IN
I
q
I
OUT_mA
2.7
250
50
100
150
200
Output Short Circuit Current
I
OUT_SC
2.0
100
130
200
250
400
13.2
5
V
µA
mA
mA
mA
mA
mA
mA
I
L
= 0 mA
For V
R
2.5V
For V
R
< 2.5V, V
IN
2.7V
For V
R
< 2.5V, V
IN
2.95V
For V
R
< 2.5V, V
IN
3.2V
For V
R
< 2.5V, V
IN
3.45V
V
IN
= V
IN(MIN)
V
OUT
= GND,
Current (average current) measured
10 ms after short is applied.
(V
OUT(MAX)
+ V
DROPOUT(MAX)
)
V
IN
13.2V,
I
L
= 1.0 mA to 250 mA for V
R
2.5V
I
L
= 1.0 mA to
200
mA for V
R
<
2.5V,
V
IN
= 3.45V
Sym
Min
Typ
Max
Units
Conditions
Output Voltage Regulation
V
OUT
Temperature Coefficient
Line Regulation
Load Regulation
V
OUT
TCV
OUT
ΔV
OUT
/
(V
OUT
XΔV
IN
)
V
R
-3.0%
V
R
-2.0%
-0.3
-2.5
V
R
±0.4
%
50
±0.1
±1.0
V
R
+3.0%
V
R
+2.0%
150
+0.3
+2.5
V
ppm/°C
%/V
%
Δ
V
OUT
/V
OUT
Note 1:
2:
3:
4:
5:
6:
7:
The minimum V
IN
must meet two conditions: V
IN
2.7V and V
IN
V
OUT(MAX)
+ V
DROPOUT(MAX)
.
V
R
is the nominal regulator output voltage. For example: V
R
= 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V, or 5.0V.
The input voltage V
IN
= V
OUT(MAX)
+ V
DROPOUT(MAX)
or V
IN
= 2.7V (whichever is greater); I
OUT
= 100 µA.
TCV
OUT
= (V
OUT-HIGH
- V
OUT-LOW
) *10
6
/ (V
R
*
ΔTemperature),
V
OUT-HIGH
= highest voltage measured over the
temperature range. V
OUT-LOW
= lowest voltage measured over the temperature range.
Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output
voltage due to heating effects are determined using thermal regulation specification TCV
OUT
.
Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured
value with an applied input voltage of V
OUT(MAX)
+ V
DROPOUT(MAX)
or 2.7V, whichever is greater.
The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction
temperature and the thermal resistance from junction to air (i.e., T
A
, T
J
,
θ
JA
). Exceeding the maximum allowable power
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained
junction temperatures above 150°C can impact the device reliability.
The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the
desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the
ambient temperature is not significant.
©
2007 Microchip Technology Inc.
DS22008B-page 3