欢迎访问ic37.com |
会员登录 免费注册
发布采购

MAX797CSE+ 参数 Datasheet PDF下载

MAX797CSE+图片预览
型号: MAX797CSE+
PDF下载: 下载PDF文件 查看货源
内容描述: 降压型控制器,具有同步整流的CPU电源 [Step-Down Controllers with Synchronous Rectifier for CPU Power]
分类和应用: 稳压器开关式稳压器或控制器电源电路开关式控制器光电二极管信息通信管理LTE
文件页数/大小: 32 页 / 415 K
品牌: MAXIM [ MAXIM INTEGRATED PRODUCTS ]
 浏览型号MAX797CSE+的Datasheet PDF文件第19页浏览型号MAX797CSE+的Datasheet PDF文件第20页浏览型号MAX797CSE+的Datasheet PDF文件第21页浏览型号MAX797CSE+的Datasheet PDF文件第22页浏览型号MAX797CSE+的Datasheet PDF文件第24页浏览型号MAX797CSE+的Datasheet PDF文件第25页浏览型号MAX797CSE+的Datasheet PDF文件第26页浏览型号MAX797CSE+的Datasheet PDF文件第27页  
Step-Down Controllers with  
Synchronous Rectifier for CPU Power  
____________Low-Voltage Operation  
__________Applications Information  
Low input voltages and low input-output differential volt-  
ages each require some extra care in the design. Low  
absolute input voltages can cause the VL linear regulator  
to enter dropout, and eventually shut itself off. Low input  
Heavy-Load Efficiency Considerations  
The major efficiency loss mechanisms under loads are,  
in the usual order of importance:  
2
2
P(I R), I R losses  
voltages relative to the output (low V -V  
differential)  
IN OUT  
can cause bad load regulation in multi-output flyback  
P(gate), gate-charge losses  
P(diode), diode-conduction losses  
P(tran), transition losses  
P(cap), capacitor ESR losses  
applications. See the design equations in the Transformer  
Design section. Finally, low V -V  
differentials can also  
IN OUT  
cause the output voltage to sag when the load current  
changes abruptly. The amplitude of the sag is a function  
of inductor value and maximum duty factor (an Electrical  
Characteristics parameter, 93% guaranteed over temper-  
ature at f = 150kHz) as follows:  
P(IC), losses due to the operating supply current  
of the IC  
Inductor-core losses are fairly low at heavy loads  
because the inductor’s AC current component is small.  
Therefore, they aren’t accounted for in this analysis.  
Ferrite cores are preferred, especially at 300kHz, but  
powdered cores such as Kool-mu can work well.  
2
(I  
) x L  
STEP  
V
SAG  
= ———————————————  
2 x C x (V  
x D  
- V  
)
OUT  
F
IN(MIN)  
MAX  
The cure for low-voltage sag is to increase the value of  
the output capacitor. For example, at V = 5.5V, V  
IN  
OUT  
Efficiency = P  
= P  
/ P x 100%  
IN  
OUT  
OUT  
= 5V, L = 10µH, f = 150kHz, a total capacitance of  
660µF will prevent excessive sag. Note that only the  
capacitance requirement is increased and the ESR  
requirements don’t change. Therefore, the added  
capacitance can be supplied by a low-cost bulk  
capacitor in parallel with the normal low-ESR capacitor.  
/ (P  
+ P  
) x 100%  
OUT  
TOTAL  
2
P
= P(I R) + P(gate) + P(diode) + P(tran) +  
TOTAL  
P(cap) + P(IC)  
2
2
P(I R) = (I  
) x (R  
+ R  
+ R  
SENSE  
)
LOAD  
DC  
DS(ON)  
where R  
is the DC resistance of the coil, R  
is  
DC  
DS(ON)  
is the current-  
the MOSFET on-resistance, and R  
SENSE  
Table 4. Low-Voltage Troubleshooting  
SOLUTION  
SYMPTOM  
CONDITION  
ROOT CAUSE  
Increase bulk output capacitance per  
formula above. Reduce inductor value.  
Sag or droop in V  
under step load change  
Low V -V  
<1.5V  
differential, Limited inductor-current slew  
rate per cycle.  
OUT  
IN OUT  
Dropout voltage is too  
Reduce f to 150kHz. Reduce MOSFET  
on-resistance and coil DCR.  
Low V -V  
<1V  
differential, Maximum duty-cycle limits  
exceeded.  
IN OUT  
high (V  
follows V as  
IN  
OUT  
V
decreases)  
IN  
Reduce L value. Tolerate the remaining  
jitter (extra output capacitance helps  
somewhat).  
Inherent limitation of fixed-fre-  
differential,  
Unstable—jitters between Low V -V  
IN OUT  
quency current-mode SMPS  
two distinct duty factors  
<1V  
slope compensation.  
Not enough duty cycle left to  
differential,  
Reduce f to 150kHz. Reduce secondary  
impedances—use Schottky if possible.  
Stack secondary winding on main output.  
Low V -V  
IN OUT  
Secondary output won’t  
support a load  
initiate forward-mode operation.  
V
< 1.3 x V  
(main)  
IN  
OUT  
Small AC current in primary can’t  
store energy for flyback operation.  
(MAX796/MAX799 only)  
Use a small 20mA Schottky diode for  
boost diode D2. Supply VL from an  
external source.  
VL linear regulator is going into  
dropout and isn’t providing  
good gate-drive levels.  
High supply current,  
poor efficiency  
Low input voltage, <5V  
Won’t start under load or  
quits before battery is  
completely dead  
Supply VL from an external source other  
VL output is so low that it hits the  
VL UVLO threshold at 4.2V max.  
Low input voltage, <4.5V  
than V , such as the system 5V supply.  
BATT  
______________________________________________________________________________________ 23  
 复制成功!