欢迎访问ic37.com |
会员登录 免费注册
发布采购

MAX1632EAI 参数 Datasheet PDF下载

MAX1632EAI图片预览
型号: MAX1632EAI
PDF下载: 下载PDF文件 查看货源
内容描述: 多路输出,低噪声电源控制器,用于笔记本电脑 [Multi-Output, Low-Noise Power-Supply Controllers for Notebook Computers]
分类和应用: 稳压器开关式稳压器或控制器电源电路开关式控制器光电二极管电脑信息通信管理
文件页数/大小: 28 页 / 240 K
品牌: MAXIM [ MAXIM INTEGRATED PRODUCTS ]
 浏览型号MAX1632EAI的Datasheet PDF文件第16页浏览型号MAX1632EAI的Datasheet PDF文件第17页浏览型号MAX1632EAI的Datasheet PDF文件第18页浏览型号MAX1632EAI的Datasheet PDF文件第19页浏览型号MAX1632EAI的Datasheet PDF文件第21页浏览型号MAX1632EAI的Datasheet PDF文件第22页浏览型号MAX1632EAI的Datasheet PDF文件第23页浏览型号MAX1632EAI的Datasheet PDF文件第24页  
Mu lt i-Ou t p u t , Lo w -No is e P o w e r-S u p p ly  
Co n t ro lle rs fo r No t e b o o k Co m p u t e rs  
systems can multiply the R  
without hurting stability or transient response.  
value by a factor of 1.5  
where: V  
= the minimum required rectified sec-  
ondary output voltage  
ESR  
SEC  
The output voltage ripple is usually dominated by the  
filter capacitors ESR, and can be approximated as  
V
FWD  
= the forward drop across the secondary  
rectifier  
I
x R  
. There is also a capacitive term, so the  
RIPPLE  
ESR  
V
= the minimum value of the main  
output voltage (from the Electrical  
Characteristics)  
OUT(MIN)  
full equation for ripple in continuous-conduction mode  
is V = I x [R + 1/(2 x π x f x  
C
discontinuous, with high peaks and widely spaced  
pulses, so the noise can actually be higher at light load  
(compared to full load). In Idle Mode, calculate the out-  
put ripple as follows:  
NOISE (p -p )  
RIPPLE  
ESR  
)]. In Idle Mode, the inductor current becomes  
OUT  
V
RECT  
= the on-state voltage drop across the  
synchronous rectifier MOSFET  
V
SENSE  
= the voltage drop across the sense  
resistor  
In positive-output applications, the transformer sec-  
ondary return is often referred to the main output volt-  
age, rather than to ground, to reduce the needed turns  
ratio. In this case, the main output voltage must first be  
0.02 x R  
ESR  
V
=
+
NOISE(p -p)  
R
SENSE  
0.0003 x Lx 1 / V  
+1 / (V - V  
)
]
[
OUT  
IN OUT  
) x C  
OUT  
subtracted from the secondary voltage to obtain V  
.
SEC  
2
(R  
SENSE  
S e le c t in g Ot h e r Co m p o n e n t s  
0–MAX1635  
MOSFET Switches  
The high-current N-channel MOSFETs must be logic-level  
types with guaranteed on-resistance specifications at  
Tra n s fo rm e r De s ig n  
(fo r Au x ilia ry Ou t p u t s On ly)  
Buck-plus-flyback applications, sometimes called cou-  
pled-inductor” topologies, need a transformer to gener-  
a te multip le outp ut volta g e s . Pe rforming the b a s ic  
electrical design is a simple task of calculating turns  
ratios and adding the power delivered to the secondary  
to calculate the current-sense resistor and primary  
inductance. However, extremes of low input-output dif-  
ferentials, widely different output loading levels, and  
high turns ratios can complicate the design due to par-  
asitic transformer parameters such as interwinding  
c a p a c ita nc e , s e c ond a ry re s is ta nc e , a nd le a ka g e  
inductance. For examples of what is possible with real-  
world tra ns forme rs , s e e the Ma ximum Se c ond a ry  
Curre nt vs . Inp ut Volta g e g ra p h in the Typ ic a l  
Operating Characteristics section.  
V
GS  
= 4.5V. Lower gate threshold specifications are bet-  
ter (i.e., 2V max rather than 3V max). Drain-source break-  
down voltage ratings must at least equal the maximum  
input voltage, preferably with a 20% derating factor. The  
best MOSFETs will have the lowest on-resistance per  
nanocoulomb of gate charge. Multiplying R  
x Q  
DS(ON)  
G
provides a good figure for comparing various MOSFETs.  
Newer MOSFET process technologies with dense cell  
structures generally perform best. The internal gate  
drivers tolerate >100nC total gate charge, but 70nC is a  
more practical upper limit to maintain best switching  
times.  
In high-current applications, MOSFET package power  
dissipation often becomes a dominant design factor.  
I2R power losses are the greatest heat contributor for  
both high-side and low-side MOSFETs. I2R losses are  
distributed between Q1 and Q2 according to duty fac-  
tor (see the following equations). Generally, switching  
los s e s a ffe c t only the up p e r MOSFET, s inc e the  
Schottky rectifier clamps the switching node in most  
cases before the synchronous rectifier turns on. Gate-  
charge losses are dissipated by the driver and dont  
he a t the MOSFET. Ca lc ula te the te mp e ra ture ris e  
according to package thermal-resistance specifications  
to ensure that both MOSFETs are within their maximum  
junction temperature at high ambient temperature. The  
wors t-c a s e d is s ip a tion for the hig h-s id e MOSFET  
oc c urs a t b oth e xtre me s of inp ut volta g e , a nd the  
worst-case dissipation for the low-side MOSFET occurs  
at maximum input voltage.  
Power from the main and secondary outputs is com-  
bined to get an equivalent current referred to the main  
output voltage (see the Inductor Value section for para-  
meter definitions). Set the current-sense resistor resis-  
tor value at 80mV / I  
.
TOTAL  
P
= The sum of the output power from all outputs  
TOTAL  
I
= P  
/ V  
= The equivalent output cur-  
TOTAL  
TOTAL  
OUT  
rent referred to V  
OUT  
V
(V  
- V  
)
OUT IN(MAX)  
OUT  
L(primary) =  
V
x f x I  
x LIR  
IN(MAX)  
TOTAL  
V
+ V  
FWD  
SEC  
Turns Ratio N =  
V
+ V  
+ V  
OUT(MIN)  
RECT SENSE  
20 ______________________________________________________________________________________  
 复制成功!