欢迎访问ic37.com |
会员登录 免费注册
发布采购

CS5165GDW16 参数 Datasheet PDF下载

CS5165GDW16图片预览
型号: CS5165GDW16
PDF下载: 下载PDF文件 查看货源
内容描述: 快速,精确的5位同步降压控制器,为下一代低电压的Pentium II处理器 [Fast, Precise 5-Bit Synchronous Buck Controller for the Next Generation Low Voltage Pentium II Processors]
分类和应用: 稳压器开关式稳压器或控制器电源电路开关式控制器光电二极管
文件页数/大小: 19 页 / 280 K
品牌: CHERRY [ CHERRY SEMICONDUCTOR CORPORATION ]
 浏览型号CS5165GDW16的Datasheet PDF文件第11页浏览型号CS5165GDW16的Datasheet PDF文件第12页浏览型号CS5165GDW16的Datasheet PDF文件第13页浏览型号CS5165GDW16的Datasheet PDF文件第14页浏览型号CS5165GDW16的Datasheet PDF文件第16页浏览型号CS5165GDW16的Datasheet PDF文件第17页浏览型号CS5165GDW16的Datasheet PDF文件第18页浏览型号CS5165GDW16的Datasheet PDF文件第19页  
Application Information: continued  
Inductor Ripple Current  
[(VIN - VOUT) × VOUT  
where:  
A= W × t = cross-sectional area  
]
ρ= the copper resistivity (µ- mil)  
Ripple current =  
(Switching Frequency × L × VIN)  
L= length (mils)  
W = width (mils)  
t = thickness (mils)  
Example: VIN = +5V, VOUT = +2.8V, ILOAD = 14.2A, L = 1.2µH,  
Freq = 200KHz  
Ripple current =  
[(5V-2.8V)x 2.8V]  
[200KHz × 1.2µH × 5V]  
For most PCBs the copper thickness, t, is 35µm (1.37 mils)  
= 5.1A  
for one ounce copper. ρ = 717.86µ-mil  
For a Pentium®II load of 14.2A the resistance needed to cre-  
ate a 56mV drop at full load is:  
Output Ripple Voltage  
56mV  
IOUT  
56mV  
14.2A  
VRIPPLE = Inductor Ripple Current × Output Capacitor ESR  
RDROOP  
=
=
= 3.9mΩ  
Example:  
The resistivity of the copper will drift with the temperature  
according to the following guidelines:  
VIN = +5V, VOUT = +2.8V, ILOAD = 14.2A, L = 1.2µH,  
Switching Frequency = 200KHz  
Output Ripple Voltage = 5.1A × Output Capacitor ESR  
R = 12% @ TA = +50˚C  
R = 34% @TA = +100˚C  
(from manufacturer’s specs)  
ESR of Output Capacitors to limit Output Voltage Spikes  
VOUT  
ESR =  
Droop Resistor Width Calculations  
IOUT  
The droop resistor must have the ability to handle the load  
current and therefore requires a minimum width which is  
calculated as follows (assume one ounce copper thickness):  
This applies for current spikes that are faster than regulator  
response time. Printed Circuit Board resistance will add to  
the ESR of the output capacitors.  
ILOAD  
W=  
0.05  
In order to limit spikes to 100mV for a 14.2A Load Step,  
ESR = 0.1/14.2 = 0.007Ω  
Ripple  
where:  
Inductor Peak Current  
Current  
W = minimum width (in mils) required for proper power  
Peak Current = Maximum Load Current +  
(
)
2
dissipation, and ILOAD Load Current Amps.  
The Pentium®II maximum load current is 14.2A.  
Therefore:  
Example: VIN = +5V, VOUT = +2.8V, ILOAD = 14.2A, L = 1.2µH,  
Freq = 200KHz  
Peak Current = 14.2A + (5.1/2) = 16.75A  
14.2A  
0.05  
A key consideration is that the inductor must be able to  
deliver the Peak Current at the switching frequency without  
saturating.  
W =  
= 284 mils = 0.7213cm  
Droop Resistor Length Calculation  
Response Time to Load Increase  
RDROOP × W × t  
0.0039 × 284 × 1.37  
(limited by Inductor value unless Maximum On-Time is  
L =  
=
= 2113 mil = 5.36cm  
717.86  
ρ
exceeded)  
L × IOUT  
Response Time =  
(VIN-VOUT  
)
Output Inductor  
The inductor should be selected based on its inductance,  
current capability, and DC resistance. Increasing the induc-  
tor value will decrease output voltage ripple, but degrade  
transient response.  
Example: VIN = +5V, VOUT = +2.8V, L = 1.2µH, 14.2A  
change in Load Current  
1.2µH × 14.2A  
Response Time =  
= 7.7µs  
(5V-2.8V)  
15