欢迎访问ic37.com |
会员登录 免费注册
发布采购

CS51311 参数 Datasheet PDF下载

CS51311图片预览
型号: CS51311
PDF下载: 下载PDF文件 查看货源
内容描述: CPU同步降压控制器的12V和5V的应用 [Synchronous CPU Buck Controller for 12V and 5V Applications]
分类和应用: 控制器
文件页数/大小: 19 页 / 239 K
品牌: CHERRY [ CHERRY SEMICONDUCTOR CORPORATION ]
 浏览型号CS51311的Datasheet PDF文件第5页浏览型号CS51311的Datasheet PDF文件第6页浏览型号CS51311的Datasheet PDF文件第7页浏览型号CS51311的Datasheet PDF文件第8页浏览型号CS51311的Datasheet PDF文件第10页浏览型号CS51311的Datasheet PDF文件第11页浏览型号CS51311的Datasheet PDF文件第12页浏览型号CS51311的Datasheet PDF文件第13页  
CS51311
Application Information: continued
When driving large capacitive loads, the COMP must
charge slowly enough to avoid tripping the CS51311 over-
current protection. The following equation can be used to
ensure unconditional startup:
I
CHG
C
COMP
<
I
LIM
I
LOAD
C
OUT
Slope Compensation
The V
2
TM
control method uses a ramp signal, generated by
the ESR of the output capacitors, that is proportional to the
ripple current through the inductor. To maintain regulation,
the V
2
TM
control loop monitors this ramp signal, through the
PWM comparator, and terminates the switch on-time.
The stringent load transient requirements of modern
microprocessors require the output capacitors to have very
low ESR. The resulting shallow slope presented to the
PWM comparator, due to the very low ESR, can lead to
pulse width jitter and variation caused by both random or
synchronous noise.
Adding slope compensation to the control loop, avoids
erratic operation of the PWM circuit, particularly at lower
duty cycles and higher frequencies, where there is not
enough ramp signal, and provides a more stable switch-
point.
The scheme that prevents that switching noise prematurely
triggers the PWM circuit consists of adding a positive volt-
age slope to the output of the Error Amplifier (COMP pin)
during an off-time cycle.
The circuit that implements this function is shown in
Figure 11.
14
COMP
where
I
CHG
= COMP Source Current (30µA typical);
C
COMP
= COMP Capacitor value (0.1µF typical);
I
LIM
= Current Limit Threshold;
I
LOAD
= Load Current during startup;
C
OUT
= Total Output Capacitance.
Normal Operation
During Normal operation, Switch Off-Time is constant and
set by the C
OFF
capacitor. Switch On-Time is adjusted by
the V
2
TM
Control loop to maintain regulation. This results in
changes in regulator switching frequency, duty cycle, and
output ripple in response to changes in load and line.
Output voltage ripple will be determined by inductor rip-
ple current and the ESR of the output capacitors
Transient Response
The CS51311 V
2
TM
Control Loop’s 200ns reaction time pro-
vides unprecedented transient response to changes in
input voltage or output current. Pulse-by-pulse adjustment
of duty cycle is provided to quickly ramp the inductor cur-
rent to the required level. Since the inductor current cannot
be changed instantaneously, regulation is maintained by
the output capacitor(s) during the time required to slew the
inductor current.
Overall load transient response is further improved
through a feature called “Adaptive Voltage Positioning”.
This technique pre-positions the output capacitors voltage
to reduce total output voltage excursions during changes
in load.
Holding tolerance to 1% allows the error amplifiers refer-
ence voltage to be targeted +25mV high without compro-
mising DC accuracy. A “Droop Resistor”, implemented
through a PC board trace, connects the Error Amps feed-
back pin (V
FB
) to the output capacitors and load and carries
the output current. With no load, there is no DC drop
across this resistor, producing an output voltage tracking
the Error amps, including the +25mV offset. When the full
load current is delivered, a 50mV drop is developed across
this resistor. This results in output voltage being offset -
25mV low.
The result of Adaptive Voltage Positioning is that addition-
al margin is provided for a load transient before reaching
the output voltage specification limits. When load current
suddenly increases from its minimum level, the output
capacitor is pre-positioned +25mV. Conversely, when load
current suddenly decreases from its maximum level, the
output capacitor is pre-positioned -25mV. For best
Transient Response, a combination of a number of high fre-
quency and bulk output capacitors are usually used.
C
COMP
CS51311
11
GATE(L)
To Synchronous FET
R
2
C
1
R
1
Figure 11: Small RC filter provides the proper voltage ramp at the
beginning of each on-time cycle.
The ramp waveform is generated through a small RC filter
that provides the proper voltage ramp at the beginning of
each on-time cycle. The resistors R1 and R2 in the circuit of
Figure 11 form a voltage divider from the GATE(L) output,
superimposing a small artificial ramp on the output of the
error amplifier. It is important that the series combination
R1/R2 is high enough in resistance not to load down and
negatively affect the slew rate on the GATE(L) pin.
Protection and Monitoring Features
Over-Current Protection
A loss-less hiccup mode current limit protection feature is
provided, requiring only the COMP capacitor to imple-
ment. The CS51311 provides overcurrent protection by
sensing the current through a “Droop” resistor, using an
internal current sense comparator. The comparator com-
pares the voltage drop through the “Droop” resistor to an
internal reference voltage of 86mV (typical).
If the voltage drop across the “Droop” resistor exceeds this
threshold, the current sense comparator allows the fault
233