欢迎访问ic37.com |
会员登录 免费注册
发布采购

HCPL-3140#300 参数 Datasheet PDF下载

HCPL-3140#300图片预览
型号: HCPL-3140#300
PDF下载: 下载PDF文件 查看货源
内容描述: [1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, SURFACE MOUNT, DIP-8]
分类和应用: 输出元件光电
文件页数/大小: 16 页 / 419 K
品牌: AVAGO [ AVAGO TECHNOLOGIES LIMITED ]
 浏览型号HCPL-3140#300的Datasheet PDF文件第8页浏览型号HCPL-3140#300的Datasheet PDF文件第9页浏览型号HCPL-3140#300的Datasheet PDF文件第10页浏览型号HCPL-3140#300的Datasheet PDF文件第11页浏览型号HCPL-3140#300的Datasheet PDF文件第13页浏览型号HCPL-3140#300的Datasheet PDF文件第14页浏览型号HCPL-3140#300的Datasheet PDF文件第15页浏览型号HCPL-3140#300的Datasheet PDF文件第16页  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
Selecting the Gate Resistor (Rg)  
Step 1: Calculate R minimum from the I peak specification. The IGBT  
and Rg in Figure 19 can be analyzed as a simple RC circuit with a  
voltage supplied by the HCPL-3140/HCPL-0314.  
Qg = 50 nC  
Qg = 100 nC  
Qg = 200 nC  
Qg = 400 nC  
g
OL  
V
– V  
CC  
OL  
Rg ≥  
I
OLPEAK  
24 V – 5 V  
0.6A  
=
0.5  
0
= 32 Ω  
0
20  
40  
60  
80  
100  
Rg GATE RESISTANCE Ω  
The V value of 5 V in the previous equation is the V at the peak  
current of 0.6A. (See Figure 6).  
Figure 20. Energy dissipated in the  
HCPL-0314 and for each IGBT switching  
cycle.  
OL  
OL  
Step 2: Check the HCPL-3140/HCPL-0314 power dissipation and  
increase Rg if necessary. The HCPL-3140/HCPL-0314 total power  
LED Drive Circuit Considerations for  
Ultra High CMR Performance  
Without a detector shield, the  
dominant cause of optocoupler  
CMR failure is capacitive  
coupling from the input side of  
the optocoupler, through the  
package, to the detector IC  
dissipation (P ) is equal to the sum of the emitter power (P ) and the  
T
E
output power (P ).  
O
P = P + P  
T
E
O
E
O
P
P
= I  
V
Duty Cycle  
+ P  
F
F
= P  
= I  
V
CC  
+ E  
(Rg,Qg) f  
SW  
O(BIAS)  
O(SWITCHING)  
CC  
as shown in Figure 21. The  
= (I  
+ K  
Qg f)  
V
CC  
+ E  
(Rg,Qg)  
f
CCBIAS  
ICC  
SW  
HCPL-3140/HCPL-0314 improves  
CMR performance by using a  
detector IC with an optically  
transparent Faraday shield, which  
diverts the capacitively coupled  
current away from the sensitive  
IC circuitry. However, this shield  
does not eliminate the capacitive  
coupling between the LED and  
opto-coupler pins 5-8 as shown in  
Figure 22. This capacitive  
coupling causes perturbations in  
the LED current during common  
mode transients and becomes the  
major source of CMR failures for  
a shielded optocoupler. The main  
design objective of a high CMR  
LED drive circuit becomes  
where K  
Qg f is the increase in I due to switching and K  
is a  
CC  
ICC  
ICC  
constant of 0.001 mA/(nC*kHz). For the circuit in Figure 19 with I  
(worst case) = 10 mA, Rg = 32 , Max Duty Cycle = 80%,  
Qg = 100 nC, f = 20 kHz and T  
F
= 85°C:  
AMAX  
P
P
= 10 mA 1.8 V 0.8 = 14 mW  
• •  
E
= (3 mA + (0.001 mA/(nC kHz)) 20 kHz 100 nC) 24 V +  
O
0.4 µJ 20 kHz = 128 mW  
< 250 mW (P  
@ 85°C)  
O(MAX)  
The value of 3 mA for I in the previous equation is the max. I over  
entire operating temperature range.  
CC  
CC  
Since P for this case is less than P  
, Rg = 32 is alright for the  
O(MAX)  
O
power dissipation.  
keeping the LED in the proper  
state (on or off) during common  
mode transients. For example,  
the recommended application  
circuit (Figure 19), can achieve  
10 kV/µs CMR while minimizing  
component complexity.  
Techniques to keep the LED in  
the proper state are discussed in  
the next two sections.  
12  
 复制成功!