欢迎访问ic37.com |
会员登录 免费注册
发布采购

ATMEGA48V-10AUR 参数 Datasheet PDF下载

ATMEGA48V-10AUR图片预览
型号: ATMEGA48V-10AUR
PDF下载: 下载PDF文件 查看货源
内容描述: [RISC Microcontroller, 8-Bit, FLASH, AVR RISC CPU, 10MHz, CMOS, PQFP32, 7 X 7 MM, 1 MM HEIGHT, 0.80 MM PITCH, GREEN, PLASTIC, MS-026ABA, TQFP-32]
分类和应用: 闪存微控制器
文件页数/大小: 376 页 / 4764 K
品牌: ATMEL [ ATMEL ]
 浏览型号ATMEGA48V-10AUR的Datasheet PDF文件第159页浏览型号ATMEGA48V-10AUR的Datasheet PDF文件第160页浏览型号ATMEGA48V-10AUR的Datasheet PDF文件第161页浏览型号ATMEGA48V-10AUR的Datasheet PDF文件第162页浏览型号ATMEGA48V-10AUR的Datasheet PDF文件第164页浏览型号ATMEGA48V-10AUR的Datasheet PDF文件第165页浏览型号ATMEGA48V-10AUR的Datasheet PDF文件第166页浏览型号ATMEGA48V-10AUR的Datasheet PDF文件第167页  
ATmega48/88/168  
Figure 18-1. SPI Block Diagram(1)  
DIVIDER  
/2/4/8/16/32/64/128  
Note:  
1. Refer to Figure 1-1 on page 2, and Table 13-3 on page 79 for SPI pin placement.  
The interconnection between Master and Slave CPUs with SPI is shown in Figure 18-2. The sys-  
tem consists of two shift Registers, and a Master clock generator. The SPI Master initiates the  
communication cycle when pulling low the Slave Select SS pin of the desired Slave. Master and  
Slave prepare the data to be sent in their respective shift Registers, and the Master generates  
the required clock pulses on the SCK line to interchange data. Data is always shifted from Mas-  
ter to Slave on the Master Out – Slave In, MOSI, line, and from Slave to Master on the Master In  
– Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave by pulling  
high the Slave Select, SS, line.  
When configured as a Master, the SPI interface has no automatic control of the SS line. This  
must be handled by user software before communication can start. When this is done, writing a  
byte to the SPI Data Register starts the SPI clock generator, and the hardware shifts the eight  
bits into the Slave. After shifting one byte, the SPI clock generator stops, setting the end of  
Transmission Flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in the SPCR Register is set, an  
interrupt is requested. The Master may continue to shift the next byte by writing it into SPDR, or  
signal the end of packet by pulling high the Slave Select, SS line. The last incoming byte will be  
kept in the Buffer Register for later use.  
When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long  
as the SS pin is driven high. In this state, software may update the contents of the SPI Data  
Register, SPDR, but the data will not be shifted out by incoming clock pulses on the SCK pin  
until the SS pin is driven low. As one byte has been completely shifted, the end of Transmission  
163  
2545M–AVR–09/07  
 复制成功!