欢迎访问ic37.com |
会员登录 免费注册
发布采购

ATMEGA48V-10MMHR 参数 Datasheet PDF下载

ATMEGA48V-10MMHR图片预览
型号: ATMEGA48V-10MMHR
PDF下载: 下载PDF文件 查看货源
内容描述: [RISC Microcontroller, 8-Bit, FLASH, AVR RISC CPU, 10MHz, CMOS, PQCC28, 4 X 4 MM, 1 MM HEIGHT, 0.45 MM PITCH, GREEN, PLASTIC, VQFN-28]
分类和应用: 闪存微控制器
文件页数/大小: 376 页 / 4764 K
品牌: ATMEL [ ATMEL ]
 浏览型号ATMEGA48V-10MMHR的Datasheet PDF文件第94页浏览型号ATMEGA48V-10MMHR的Datasheet PDF文件第95页浏览型号ATMEGA48V-10MMHR的Datasheet PDF文件第96页浏览型号ATMEGA48V-10MMHR的Datasheet PDF文件第97页浏览型号ATMEGA48V-10MMHR的Datasheet PDF文件第99页浏览型号ATMEGA48V-10MMHR的Datasheet PDF文件第100页浏览型号ATMEGA48V-10MMHR的Datasheet PDF文件第101页浏览型号ATMEGA48V-10MMHR的Datasheet PDF文件第102页  
In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC0x pins.  
Setting the COM0x1:0 bits to two will produce a non-inverted PWM and an inverted PWM output  
can be generated by setting the COM0x1:0 to three: Setting the COM0A1:0 bits to one allows  
the OC0A pin to toggle on Compare Matches if the WGM02 bit is set. This option is not available  
for the OC0B pin (see Table 14-6 on page 103). The actual OC0x value will only be visible on  
the port pin if the data direction for the port pin is set as output. The PWM waveform is gener-  
ated by setting (or clearing) the OC0x Register at the compare match between OCR0x and  
TCNT0, and clearing (or setting) the OC0x Register at the timer clock cycle the counter is  
cleared (changes from TOP to BOTTOM).  
The PWM frequency for the output can be calculated by the following equation:  
f
clk_I/O  
f
= -----------------  
OCnxPWM  
N 256  
The N variable represents the prescale factor (1, 8, 64, 256, or 1024).  
The extreme values for the OCR0A Register represents special cases when generating a PWM  
waveform output in the fast PWM mode. If the OCR0A is set equal to BOTTOM, the output will  
be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR0A equal to MAX will result  
in a constantly high or low output (depending on the polarity of the output set by the COM0A1:0  
bits.)  
A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-  
ting OC0x to toggle its logical level on each compare match (COM0x1:0 = 1). The waveform  
generated will have a maximum frequency of fOC0 = fclk_I/O/2 when OCR0A is set to zero. This  
feature is similar to the OC0A toggle in CTC mode, except the double buffer feature of the Out-  
put Compare unit is enabled in the fast PWM mode.  
14.7.4  
Phase Correct PWM Mode  
The phase correct PWM mode (WGM02:0 = 1 or 5) provides a high resolution phase correct  
PWM waveform generation option. The phase correct PWM mode is based on a dual-slope  
operation. The counter counts repeatedly from BOTTOM to TOP and then from TOP to BOT-  
TOM. TOP is defined as 0xFF when WGM2:0 = 1, and OCR0A when WGM2:0 = 5. In non-  
inverting Compare Output mode, the Output Compare (OC0x) is cleared on the compare match  
between TCNT0 and OCR0x while upcounting, and set on the compare match while downcount-  
ing. In inverting Output Compare mode, the operation is inverted. The dual-slope operation has  
lower maximum operation frequency than single slope operation. However, due to the symmet-  
ric feature of the dual-slope PWM modes, these modes are preferred for motor control  
applications.  
In phase correct PWM mode the counter is incremented until the counter value matches TOP.  
When the counter reaches TOP, it changes the count direction. The TCNT0 value will be equal  
to TOP for one timer clock cycle. The timing diagram for the phase correct PWM mode is shown  
on Figure 14-7. The TCNT0 value is in the timing diagram shown as a histogram for illustrating  
the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The  
small horizontal line marks on the TCNT0 slopes represent compare matches between OCR0x  
and TCNT0.  
98  
ATmega48/88/168  
2545M–AVR–09/07  
 复制成功!