ATmega64(L)
Overview
The ATmega64 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing
powerful instructions in a single clock cycle, the ATmega64 achieves throughputs approaching 1 MIPS per MHz, allowing
the system designer to optimize power consumption versus processing speed.
Block Diagram
Figure 2. Block Diagram
PF0 - PF7
PA0 - PA7
PC0 - PC7
VCC
GND
PORTA DRIVERS
PORTF DRIVERS
PORTC DRIVERS
AVCC
DATA REGISTER
PORTF
DATA DIR.
REG. PORTF
DATA REGISTER
PORTA
DATA DIR.
REG. PORTA
DATA REGISTER
PORTC
DATA DIR.
REG. PORTC
8-BIT DATA BUS
XTAL1
XTAL2
AREF
CALIB. OSC
INTERNAL
OSCILLATOR
ADC
OSCILLATOR
OSCILLATOR
PROGRAM
COUNTER
STACK
POINTER
WATCHDOG
TIMER
JTAG TAP
TIMING AND
CONTROL
PROGRAM
FLASH
MCU CONTROL
REGISTER
SRAM
ON-CHIP DEBUG
RESET
BOUNDARY-
SCAN
INSTRUCTION
REGISTER
TIMER/
COUNTERS
GENERAL
PURPOSE
REGISTERS
X
Y
Z
PROGRAMMING
LOGIC
INSTRUCTION
DECODER
INTERRUPT
UNIT
PEN
CONTROL
LINES
ALU
EEPROM
STATUS
REGISTER
2-WIRE SERIAL
INTERFACE
SPI
USART0
USART1
DATA REGISTER
PORTE
DATA DIR.
REG. PORTE
DATA REGISTER
PORTB
DATA DIR.
REG. PORTB
DATA REGISTER
PORTD
DATA DIR.
REG. PORTD
DATA REG. DATA DIR.
PORTG
REG. PORTG
PORTB DRIVERS
PORTD DRIVERS
PORTG DRIVERS
PORTE DRIVERS
PE0 - PE7
PB0 - PB7
PD0 - PD7
PG0 - PG4
The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly
connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction
executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times
faster than conventional CISC microcontrollers.
3
2490LS–AVR–10/06