欢迎访问ic37.com |
会员登录 免费注册
发布采购

ATMEGA32L-8AUR 参数 Datasheet PDF下载

ATMEGA32L-8AUR图片预览
型号: ATMEGA32L-8AUR
PDF下载: 下载PDF文件 查看货源
内容描述: [RISC Microcontroller, 8-Bit, FLASH, AVR RISC CPU, 8MHz, CMOS, PQFP44, 10 X 10 MM, 1 MM HEIGHT, 0.80 MM PITCH, GREEN, PLASTIC, MS-026ACB, TQFP-44]
分类和应用: 闪存微控制器
文件页数/大小: 347 页 / 3171 K
品牌: ATMEL [ ATMEL ]
 浏览型号ATMEGA32L-8AUR的Datasheet PDF文件第139页浏览型号ATMEGA32L-8AUR的Datasheet PDF文件第140页浏览型号ATMEGA32L-8AUR的Datasheet PDF文件第141页浏览型号ATMEGA32L-8AUR的Datasheet PDF文件第142页浏览型号ATMEGA32L-8AUR的Datasheet PDF文件第144页浏览型号ATMEGA32L-8AUR的Datasheet PDF文件第145页浏览型号ATMEGA32L-8AUR的Datasheet PDF文件第146页浏览型号ATMEGA32L-8AUR的Datasheet PDF文件第147页  
ATmega32(L)  
Table 60. Equations for Calculating Baud Rate Register Setting  
Equation for  
Calculating UBRR  
Value  
Equation for Calculating  
Baud Rate(1)  
Operating Mode  
Asynchronous Normal Mode  
(U2X = 0)  
f
f
OSC  
OSC  
BAUD = -------------------------------------- UBRR = ----------------------- 1  
16(UBRR + 1)  
16BAUD  
Asynchronous Double Speed Mode  
(U2X = 1)  
f
f
OSC  
OSC  
BAUD = ----------------------------------- UBRR = -------------------- 1  
8(UBRR + 1)  
8BAUD  
Synchronous Master Mode  
f
f
OSC  
OSC  
BAUD = ----------------------------------- UBRR = -------------------- 1  
2(UBRR + 1)  
1. The baud rate is defined to be the transfer rate in bit per second (bps).  
BAUD Baud rate (in bits per second, bps)  
fOSC System Oscillator clock frequency  
UBRR Contents of the UBRRH and UBRRL Registers, (0 - 4095)  
2BAUD  
Note:  
Some examples of UBRR values for some system clock frequencies are found in Table  
68 (see page 165).  
Double Speed Operation  
(U2X)  
The transfer rate can be doubled by setting the U2X bit in UCSRA. Setting this bit only  
has effect for the asynchronous operation. Set this bit to zero when using synchronous  
operation.  
Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively  
doubling the transfer rate for asynchronous communication. Note however that the  
receiver will in this case only use half the number of samples (reduced from 16 to 8) for  
data sampling and clock recovery, and therefore a more accurate baud rate setting and  
system clock are required when this mode is used. For the Transmitter, there are no  
downsides.  
External Clock  
External clocking is used by the synchronous slave modes of operation. The description  
in this section refers to Figure 70 for details.  
External clock input from the XCK pin is sampled by a synchronization register to mini-  
mize the chance of meta-stability. The output from the synchronization register must  
then pass through an edge detector before it can be used by the Transmitter and  
receiver. This process introduces a two CPU clock period delay and therefore the maxi-  
mum external XCK clock frequency is limited by the following equation:  
f
OSC  
-----------  
f
<
XCK  
4
Note that fosc depends on the stability of the system clock source. It is therefore recom-  
mended to add some margin to avoid possible loss of data due to frequency variations.  
Synchronous Clock Operation When Synchronous mode is used (UMSEL = 1), the XCK pin will be used as either clock  
input (Slave) or clock output (Master). The dependency between the clock edges and  
data sampling or data change is the same. The basic principle is that data input (on  
RxD) is sampled at the opposite XCK clock edge of the edge the data output (TxD) is  
changed.  
143  
2503J–AVR–10/06  
 复制成功!