欢迎访问ic37.com |
会员登录 免费注册
发布采购

AM29LV017D-120EC 参数 Datasheet PDF下载

AM29LV017D-120EC图片预览
型号: AM29LV017D-120EC
PDF下载: 下载PDF文件 查看货源
内容描述: 16兆位(2M ×8位) CMOS 3.0伏只统一部门快闪记忆体 [16 Megabit (2 M x 8-Bit) CMOS 3.0 Volt-only Uniform Sector Flash Memory]
分类和应用: 闪存内存集成电路光电二极管
文件页数/大小: 48 页 / 952 K
品牌: AMD [ AMD ]
 浏览型号AM29LV017D-120EC的Datasheet PDF文件第17页浏览型号AM29LV017D-120EC的Datasheet PDF文件第18页浏览型号AM29LV017D-120EC的Datasheet PDF文件第19页浏览型号AM29LV017D-120EC的Datasheet PDF文件第20页浏览型号AM29LV017D-120EC的Datasheet PDF文件第22页浏览型号AM29LV017D-120EC的Datasheet PDF文件第23页浏览型号AM29LV017D-120EC的Datasheet PDF文件第24页浏览型号AM29LV017D-120EC的Datasheet PDF文件第25页  
The system can determine the status of the erase op-  
eration by using DQ7, DQ6, DQ2, or RY/BY#. See  
“Write Operation Status” for information on these sta-  
tus bits. When the Embedded Erase algorithm is com-  
plete, the device returns to reading array data and  
addresses are no longer latched.  
When the Embedded Erase algorithm is complete, the  
device returns to reading array data and addresses are  
no longer latched. The system can determine the sta-  
tus of the erase operation by using DQ7, DQ6, DQ2, or  
RY/BY#. (Refer to “Write Operation Status” for informa-  
tion on these status bits.)  
Figure 4 illustrates the algorithm for the erase opera-  
tion. See the Erase/Program Operations tables in “AC  
Characteristics” for parameters, and to Figure 16 for  
timing diagrams.  
Figure 4 illustrates the algorithm for the erase opera-  
tion. Refer to the Erase/Program Operations tables in  
the “AC Characteristics” section for parameters, and to  
Figure 16 for timing diagrams.  
Sector Erase Command Sequence  
Erase Suspend/Erase Resume Commands  
Sector erase is a six bus cycle operation. The sector  
erase command sequence is initiated by writing two un-  
lock cycles, followed by a set-up command. Two addi-  
tional unlock write cycles are then followed by the  
address of the sector to be erased, and the sector  
erase command. Table 8 shows the address and data  
requirements for the sector erase command sequence.  
The Erase Suspend command allows the system to in-  
terrupt a sector erase operation and then read data  
from, or program data to, any sector not selected for  
erasure. This command is valid only during the sector  
erase operation, including the time-out period 50 µs  
during the sector erase command sequence. The  
Erase Suspend command is ignored if written during  
the chip erase operation or Embedded Program algo-  
rithm. Writing the Erase Suspend command during the  
Sector Erase time-out immediately terminates the  
time-out period and suspends the erase operation. Ad-  
dresses are “don’t-cares” when writing the Erase Sus-  
pend command.  
The device does not require the system to preprogram  
the memory prior to erase. The Embedded Erase algo-  
rithm automatically programs and verifies the sector for  
an all zero data pattern prior to electrical erase. The  
system is not required to provide any controls or tim-  
ings during these operations.  
When the Erase Suspend command is written during a  
sector erase operation, the device requires a maximum  
of 20 µs to suspend the erase operation. However,  
when the Erase Suspend command is written during  
the sector erase time-out, the device immediately ter-  
minates the time-out period and suspends the erase  
operation.  
After the command sequence is written, a sector erase  
time-out of 50 µs begins. During the time-out period,  
additional sector addresses and sector erase com-  
mands may be written. Loading the sector erase buffer  
may be done in any sequence, and the number of sec-  
tors may be from one sector to all sectors. The time be-  
tween these additional cycles must be less than 50 µs,  
otherwise the last address and command might not be  
accepted, and erasure may begin. It is recommended  
that processor interrupts be disabled during this time to  
ensure all commands are accepted. The interrupts can  
be re-enabled after the last Sector Erase command is  
written. If the time between additional sector erase  
commands can be assumed to be less than 50 µs, the  
system need not monitor DQ3. Any command other  
than Sector Erase or Erase Suspend during the  
time-out period resets the device to reading array  
data. The system must rewrite the command sequence  
and any additional sector addresses and commands.  
After the erase operation has been suspended, the  
system can read array data from or program data to  
any sector not selected for erasure. (The device “erase  
suspends” all sectors selected for erasure.) Normal  
read and write timings and command definitions apply.  
Reading at any address within erase-suspended sec-  
tors produces status data on DQ7–DQ0. The system  
can use DQ7, or DQ6 and DQ2 together, to determine  
if a sector is actively erasing or is erase-suspended.  
See “Write Operation Status” for information on these  
status bits.  
After an erase-suspended program operation is com-  
plete, the system can once again read array data within  
non-suspended sectors. The system can determine  
the status of the program operation using the DQ7 or  
DQ6 status bits, just as in the standard program oper-  
ation. See “Write Operation Status” for more informa-  
tion.  
The system can monitor DQ3 to determine if the sector  
erase timer has timed out. (See the “DQ3: Sector Erase  
Timer” section.) The time-out begins from the rising  
edge of the final WE# pulse in the command sequence.  
Once the sector erase operation has begun, only the  
Erase Suspend command is valid. All other commands  
are ignored. Note that a hardware reset during the  
sector erase operation immediately terminates the op-  
eration. The Sector Erase command sequence should  
be reinitiated once the device has returned to reading  
array data, to ensure data integrity.  
The system may also write the autoselect command  
sequence when the device is in the Erase Suspend  
mode. The device allows reading autoselect codes  
even at addresses within erasing sectors, since the  
codes are not stored in the memory array. When the  
Am29LV017D  
23  
 复制成功!