Chapter 2: MAX V Architecture
2–15
MultiTrack Interconnect
Figure 2–10. R4 Interconnect Connections
Adjacent LAB can
drive onto another
LAB’s R4 Interconnect
R4 Interconnect
Driving Right
C4 Column Interconnects (1)
R4 Interconnect
Driving Left
LAB
Neighbor
Primary
LAB (2)
LAB
Neighbor
Notes to Figure 2–10:
(1) C4 interconnects can drive R4 interconnects.
(2) This pattern is repeated for every LAB in the LAB row.
The column interconnect operates similarly to the row interconnect. Each column of
LABs is served by a dedicated column interconnect, which vertically routes signals to
and from LABs and row and column IOEs. These column resources include:
■
■
■
LUT chain interconnects within an LAB
Register chain interconnects within an LAB
C4 interconnects traversing a distance of four LABs in an up and down direction
MAX V devices include an enhanced interconnect structure within LABs for routing
LE output to LE input connections faster using LUT chain connections and register
chain connections. The LUT chain connection allows the combinational output of an
LE to directly drive the fast input of the LE right below it, bypassing the local
interconnect. These resources can be used as a high-speed connection for wide fan-in
functions from LE 1to LE 10in the same LAB. The register chain connection allows
the register output of one LE to connect directly to the register input of the next LE in
the LAB for fast shift registers. The Quartus II Compiler automatically takes
advantage of these resources to improve utilization and performance. Figure 2–11
shows the LUT chain and register chain interconnects.
December 2010 Altera Corporation
MAX V Device Handbook