欢迎访问ic37.com |
会员登录 免费注册
发布采购

AS29CF160B-55TIN 参数 Datasheet PDF下载

AS29CF160B-55TIN图片预览
型号: AS29CF160B-55TIN
PDF下载: 下载PDF文件 查看货源
内容描述: [2M X 8 Bit / 1M X 16 Bit CMOS 5.0 Volt-only]
分类和应用: 光电二极管内存集成电路闪存
文件页数/大小: 41 页 / 835 K
品牌: ALSC [ ALLIANCE SEMICONDUCTOR CORPORATION ]
 浏览型号AS29CF160B-55TIN的Datasheet PDF文件第16页浏览型号AS29CF160B-55TIN的Datasheet PDF文件第17页浏览型号AS29CF160B-55TIN的Datasheet PDF文件第18页浏览型号AS29CF160B-55TIN的Datasheet PDF文件第19页浏览型号AS29CF160B-55TIN的Datasheet PDF文件第21页浏览型号AS29CF160B-55TIN的Datasheet PDF文件第22页浏览型号AS29CF160B-55TIN的Datasheet PDF文件第23页浏览型号AS29CF160B-55TIN的Datasheet PDF文件第24页  
AS29CF160T-55TIN  
AS29CF160B-55TIN  
RY/  
: Read/  
Busy  
BY  
I/O2: Toggle Bit II  
The RY/  
is a dedicated, open-drain output pin that  
BY  
The "Toggle Bit II" on I/O2, when used with I/O6, indicates  
whether a particular sector is actively erasing (that is, the  
Embedded Erase algorithm is in progress), or whether that  
sector is erase-suspended. Toggle Bit II is valid after the  
indicates whether an Embedded algorithm is in progress or  
complete. The RY/ status is valid after the rising edge of  
BY  
pulse in the command sequence. Since RY/  
the final  
WE  
BY  
pins can be tied  
rising edge of the final  
pulse in the command sequence.  
is an open-drain output, several RY/  
BY  
together in parallel with a pull-up resistor to VCC.  
WE  
I/O2 toggles when the system reads at addresses within those  
sectors that have been selected for erasure. (The system may  
If the output is low (Busy), the device is actively erasing or  
programming. (This includes programming in the Erase  
Suspend mode.) If the output is high (Ready), the device is  
ready to read array data (including during the Erase Suspend  
mode), or is in the standby mode.  
use either  
or  
to control the read cycles.) But I/O2  
CE  
OE  
cannot distinguish whether the sector is actively erasing or is  
erase-suspended. I/O6, by comparison, indicates whether the  
device is actively erasing, or is in Erase Suspend, but cannot  
distinguish which sectors are selected for erasure. Thus, both  
status bits are required for sector and mode information.  
Refer to Table 10 to compare outputs for I/O2 and I/O6.  
Figure 6 shows the toggle bit algorithm in flowchart form, and  
the section " I/O2: Toggle Bit II" explains the algorithm. See  
also the " I/O6: Toggle Bit I" subsection. Refer to the Toggle  
Bit Timings figure for the toggle bit timing diagram. The I/O2  
vs. I/O6 figure shows the differences between I/O2 and I/O6 in  
graphical form.  
Table 10 shows the outputs for RY/  
. Refer to “  
RESET  
BY  
Timings”, “Timing Waveforms for Program Operation” and  
“Timing Waveforms for Chip/Sector Erase Operation” for  
more information.  
I/O6: Toggle Bit I  
Toggle Bit I on I/O6 indicates whether an Embedded Program  
or Erase algorithm is in progress or complete, or whether the  
device has entered the Erase Suspend mode. Toggle Bit I  
may be read at any address, and is valid after the rising edge  
Reading Toggle Bits I/O6, I/O2  
of the final  
pulse in the command sequence (prior to the  
WE  
Refer to Figure 6 for the following discussion. Whenever the  
system initially begins reading toggle bit status, it must read  
I/O7 - I/O0 at least twice in a row to determine whether a  
toggle bit is toggling. Typically, a system would note and store  
the value of the toggle bit after the first read. After the second  
read, the system would compare the new value of the toggle  
bit with the first. If the toggle bit is not toggling, the device has  
completed the program or erase operation. The system can  
read array data on I/O7 - I/O0 on the following read cycle.  
However, if after the initial two read cycles, the system  
determines that the toggle bit is still toggling, the system also  
should note whether the value of I/O5 is high (see the section  
on I/O5). If it is, the system should then determine again  
whether the toggle bit is toggling, since the toggle bit may  
have stopped toggling just as I/O5 went high. If the toggle bit  
is no longer toggling, the device has successfully completed  
the program or erase operation. If it is still toggling, the device  
did not complete the operation successfully, and the system  
must write the reset command to return to reading array data.  
The remaining scenario is that the system initially determines  
that the toggle bit is toggling and I/O5 has not gone high. The  
system may continue to monitor the toggle bit and I/O5  
through successive read cycles, determining the status as  
described in the previous paragraph. Alternatively, it may  
choose to perform other system tasks. In this case, the  
system must start at the beginning of the algorithm when it  
returns to determine the status of the operation (top of Figure  
6).  
program or erase operation), and during the sector erase  
time-out.  
During an Embedded Program or Erase algorithm operation,  
successive read cycles to any address cause I/O6 to toggle.  
(The system may use either  
or  
to control the read  
CE  
OE  
cycles.) When the operation is complete, I/O6 stops toggling.  
After an erase command sequence is written, if all sectors  
selected for erasing are protected, I/O6 toggles for  
approximately 100µs, then returns to reading array data. If not  
all selected sectors are protected, the Embedded Erase  
algorithm erases the unprotected sectors, and ignores the  
selected sectors that are protected.  
The system can use I/O6 and I/O2 together to determine  
whether a sector is actively erasing or is erase-suspended.  
When the device is actively erasing (that is, the Embedded  
Erase algorithm is in progress), I/O6 toggles. When the device  
enters the Erase Suspend mode, I/O6 stops toggling.  
However, the system must also use I/O2 to determine which  
sectors are erasing or erase-suspended. Alternatively, the  
system can use I/O7 (see the subsection on " I/O7:  
Data  
Polling").  
If a program address falls within a protected sector, I/O6  
toggles for approximately 2µs after the program command  
sequence is written, then returns to reading array data.  
I/O6 also toggles during the erase-suspend-program mode,  
and stops toggling once the Embedded Program algorithm is  
complete.  
The Write Operation Status table shows the outputs for  
Toggle Bit I on I/O6. Refer to Figure 6 for the toggle bit  
algorithm, and to the Toggle Bit Timings figure in the "AC  
Characteristics" section for the timing diagram. The I/O2 vs.  
I/O6 figure shows the differences between I/O2 and I/O6 in  
graphical form. See also the subsection on " I/O2: Toggle Bit  
II".  
I/O5: Exceeded Timing Limits  
I/O5 indicates whether the program or erase time has  
exceeded a specified internal pulse count limit. Under these  
conditions I/O5 produces a "1." This is a failure condition that  
indicates the program or erase cycle was not successfully  
completed.  
Confidential  
- 20 of 41 -  
Rev.1.0 July 2019  
 复制成功!