6
1.5
1.0
1000
100
10
40 mA
35 mA
30 mA
T
V
= 25°C
A
T
= 25°C
10
A
= 5.0 V
CC
I
F
+
V
–
F
25 mA
20 mA
1.0
5
0
0.1
0.5
0.1
NORMALIZED
= 16 mA
15 mA
10 mA
I
F
0.01
0.001
V
= 0.4 V
= 5 V
= 25°C
O
V
T
CC
I
= 5 mA
F
A
0
1
10
100
1.10 1.20
1.30 1.40
1.50
1.60
0
10
– OUTPUT VOLTAGE – V
20
V
V
– FORWARD VOLTAGE – VOLTS
I
– INPUT CURRENT – mA
O
F
F
Figure 1. dc and Pulsed Transfer
Characteristics.
Figure 2. Current Transfer Ratio vs.
Input Current.
Figure 3. Input Current vs. Forward
Voltage.
1.1
1.0
2000
3.0
I
I
= 10 mA
= 16 mA
F
F
I
= 16 mA, V
CC
= 5.0 V
F
2.0
R
= 1.9 kΩ
L
V
T
A
= 5.0 V
= 25 °C
CC
1500
1000
500
0
1.0
0.8
t
PLH
0.9
NORMALIZED
0.6
I
V
V
T
= 16 mA
F
= 0.4 V
O
0.8
0.7
0.6
0.4
= 5 V
CC
t
t
t
PHL
PLH
PHL
= 25°C
A
0.2
0.1
-60
-20
20
60
100
140
-60
-20
20
60
100
1
2
3
4
5
6 7 8 9 10
T
– TEMPERATURE – °C
R
– LOAD RESISTANCE – kΩ
A
T
– TEMPERATURE – °C
L
A
Figure 4. Current Transfer Ratio vs.
Temperature.
Figure 5. Propagation Delay vs.
Temperature.
Figure 6. Propagation Delay Time
vs. Load Resistance.
+4
0.30
10
I
V
= 0
T
= 25°C, R = 100 Ω, V
= 5 V
CC
F
A
L
= V = 5.0 V
O
CC
+3
10
+2
0.20
0.10
10
+1
10
0
-1
-2
10
10
10
0
0
4
8
12
16
25
-50 -25
0
+25 +50 +75 +100
I
– QUIESCENT INPUT CURRENT – mA
T
A
– TEMPERATURE – °C
F
Figure 7. Logic High Output
Current vs. Temperature.
Figure 8. Small-Signal Current
Transfer Ratio vs. Quiescent Input
Current.