欢迎访问ic37.com |
会员登录 免费注册
发布采购

CY2SSTV857ZI-27 参数 Datasheet PDF下载

CY2SSTV857ZI-27图片预览
型号: CY2SSTV857ZI-27
PDF下载: 下载PDF文件 查看货源
内容描述: 差分时钟缓冲器/驱动器DDR333 / PC2700兼容 [Differential Clock Buffer/Driver DDR333/PC2700-Compliant]
分类和应用: 驱动器双倍数据速率PC时钟
文件页数/大小: 8 页 / 134 K
品牌: SPECTRALINEAR [ SPECTRALINEAR INC ]
 浏览型号CY2SSTV857ZI-27的Datasheet PDF文件第1页浏览型号CY2SSTV857ZI-27的Datasheet PDF文件第2页浏览型号CY2SSTV857ZI-27的Datasheet PDF文件第3页浏览型号CY2SSTV857ZI-27的Datasheet PDF文件第4页浏览型号CY2SSTV857ZI-27的Datasheet PDF文件第5页浏览型号CY2SSTV857ZI-27的Datasheet PDF文件第7页浏览型号CY2SSTV857ZI-27的Datasheet PDF文件第8页  
CY2SSTV857-27  
Absolute Maximum Conditions[2]  
This device contains circuitry to protect the inputs against  
damage due to high static voltages or electric field; however,  
precautions should be taken to avoid application of any  
voltage higher than the maximum rated voltages to this circuit.  
For proper operation, Vin and Vout should be constrained to the  
range:  
Input Voltage Relative to VSS:...............................VSS – 0.3V  
Input Voltage Relative to VDDQ or AVDD: ........... VDDQ + 0.3V  
Storage Temperature: ................................ –65°C to + 150°C  
Operating Temperature:.................................... 0°C to +85°C  
Maximum Power Supply:................................................3.5V  
VSS < (Vin or Vout) < VDDQ  
.
Unused inputs must always be tied to an appropriate logic  
voltage level (either VSS or VDDQ).  
DC Electrical Specifications (AVDD = VDDQ = 2.5v 5%, TA = 0°C to +85°C) [3]  
Parameter  
VDDQ  
VIL  
Description  
Supply Voltage  
Condition  
Min.  
Typ.  
Max.  
2.63  
Unit  
V
Operating  
PD#  
2.38  
2.5  
Input Low Voltage  
0.3 × VDDQ  
V
VIH  
Input High Voltage  
Differential Input Voltage[4]  
0.7 × VDDQ  
0.36  
V
VID  
CLK, FBIN  
Differential Input Crossing Voltage[5] CLK, FBIN  
VDDQ + 0.3  
V
VIX  
(VDDQ/2) –  
0.2  
VDDQ/2 (VDDQ/2)+  
0.2  
V
IIN  
Input Current [CLK, FBIN, PD#]  
Output Low Current  
VIN = 0V or VIN = VDDQ  
–10  
26  
10  
µA  
mA  
mA  
V
IOL  
VDDQ = 2.375V, VOUT = 1.2V  
VDDQ = 2.375V, VOUT = 1V  
VDDQ= 2.375V, IOL = 12 mA  
VDDQ = 2.375V, IOH = –12 mA  
35  
–32  
0.6  
IOH  
Output High Current  
–28  
VOL  
VOH  
VOUT  
VOC  
Output Low Voltage  
Output High Voltage  
Output Voltage Swing[6]  
Output Crossing Voltage[7]  
1.7  
1.1  
V
VDDQ – 0.4  
V
(VDDQ/2) –  
0.2  
VDDQ/2 (VDDQ/2)+  
0.2  
V
IOZ  
High-Impedance Output Current  
Dynamic Supply Current[8]  
PLL Supply Current  
VO = GND or VO = VDDQ  
All VDDQ, FO = 170 MHz  
VDDA only  
–10  
10  
µA  
mA  
mA  
µA  
IDDQ  
IDD  
235  
9
300  
12  
IDDS  
Standby Supply Current  
PD# = 0 and CLK/CLK# < 10  
MHz  
100  
Cin  
Input Pin Capacitance  
4
pF  
AC Electrical Specifications (AVDD = VDDQ = 2.5V 5%, TA = 0°C to +85°C) [9, 10]  
Parameter  
fCLK  
Description  
Operating Clock Frequency  
Input Clock Duty Cycle  
Maximum PLL lock Time  
Duty Cycle[11]  
Condition  
Min.  
60  
Typ.  
Max.  
200  
60  
Unit  
MHz  
%
AVDD, VDDQ = 2.5V r 0.2V  
tDC  
40  
tLOCK  
DTYC  
100  
50.5  
51  
Ps  
60 MHz to 100 MHz  
101 MHz to 170 MHz  
20%–80% of VOD  
49.5  
49  
1
50  
%
%
tsl(o)  
Output Clocks Slew Rate  
2
V/ns  
Notes:  
2. Multiple Supplies: The Voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.  
3. Unused inputs must be held HIGH or LOW to prevent them from floating.  
4. Differential input signal voltage specifies the differential voltage VTR–VCPI required for switching, where VTR is the true input level and VCP is the complementary  
input level. See Figure 6.  
5. Differential cross-point input voltage is expected to track V  
6. For load conditions see Figure 6.  
and is the voltage at which the differential signal must be crossing.  
DDQ  
7. The value of VOC is expected to be (VTR + VCP)/2. In case of each clock directly terminated by a 120: resistor. See Figure 6.  
8. All outputs switching load with 14 pF in 60: environment. See Figure 6.  
9. Parameters are guaranteed by design and characterization. Not 100% tested in production.  
10. PLL is capable of meeting the specified parameters while supporting SSC synthesizers with modulation frequency between 30kHz and 50 kHz with a down  
spread or –0.5%.  
11. While the pulse skew is almost constant over frequency, the duty cycle error increases at higher frequencies. This is due to the formula: duty cycle = t  
where the cycle time(tC) decreases as the frequency goes up.  
/t ,  
C
WHC  
Rev 1.0,November 21, 2006  
Page 6 of 8