欢迎访问ic37.com |
会员登录 免费注册
发布采购

XC4000FM 参数 Datasheet PDF下载

XC4000FM图片预览
型号: XC4000FM
PDF下载: 下载PDF文件 查看货源
内容描述: 逻辑单元阵列家族 [Logic Cell Array Families]
分类和应用:
文件页数/大小: 40 页 / 354 K
品牌: XILINX [ XILINX, INC ]
 浏览型号XC4000FM的Datasheet PDF文件第1页浏览型号XC4000FM的Datasheet PDF文件第2页浏览型号XC4000FM的Datasheet PDF文件第4页浏览型号XC4000FM的Datasheet PDF文件第5页浏览型号XC4000FM的Datasheet PDF文件第6页浏览型号XC4000FM的Datasheet PDF文件第7页浏览型号XC4000FM的Datasheet PDF文件第8页浏览型号XC4000FM的Datasheet PDF文件第9页  
Architectural Overview
The XC4000 families achieve high speed through ad-
vanced semiconductor technology and through improved
architecture, and supports system clock rates of up to 50
MHz. Compared to older Xilinx FPGA families, the XC4000
families are more powerful, offering on-chip RAM and
wide-input decoders. They are more versatile in their
applications, and design cycles are faster due to a combi-
nation of increased routing resources and more sophisti-
cated software. And last, but not least, they more than
double the available complexity, up to the 20,000-gate
level.
The XC4000 families have 16 members, ranging in com-
plexity from 2,000 to 25,000 gates.
Logic Cell Array Families
Xilinx high-density user-programmable gate arrays in-
clude three major configurable elements: configurable
logic blocks (CLBs), input/output blocks (IOBs), and inter-
connections. The CLBs provide the functional elements
for constructing the user’s logic. The IOBs provide the
interface between the package pins and internal signal
lines. The programmable interconnect resources provide
routing paths to connect the inputs and outputs of the CLBs
and IOBs onto the appropriate networks. Customized
configuration is established by programming internal static
memory cells that determine the logic functions and inter-
connections implemented in the LCA device.
The first generation of LCA devices, the XC2000 family,
was introduced in 1985. It featured logic blocks consisting
of a combinatorial function generator capable of imple-
menting 4-input Boolean functions and a single storage
element. The XC2000 family has two members ranging in
complexity from 800 to 1500 gates.
In the second-generation XC3000A LCA devices, intro-
duced in 1987, the logic block was expanded to implement
wider Boolean functions and to incorporate a second flip-
flop in each logic block. Today, the XC3000 devices range
in complexity from 1,300 to 10,000 usable gates. They
have a maximum guaranteed toggle frequency ranging
from 70 to 270 MHz, equivalent to maximum system clock
frequencies of up to 80 MHz.
The third generation of LCA devices further extends this
architecture with a yet more powerful and flexible logic
block. I/O block functions and interconnection options
have also been enhanced with each successive genera-
tion, further extending the range of applications that can be
implemented with an LCA device.
This third-generation architecture forms the basis of the
XC4000 families of devices that feature logic densities up
to 25,000 usable gates and support system clock rates of
up to 50 MHz. The use of an advanced, sub-micron CMOS
process technology as well as architectural improvements
contribute to this increase in FPGA capabilities. However,
achieving these high logic-density and performance levels
also requires new and more powerful automated design
tools. IC and software engineers collaborated during the
definition of the third-generation LCA architecture to meet
an important performance goal — an FPGA architecture
and companion design tools for completely automatic
placement and routing of 95% of all designs, plus a
convenient way to complete the remaining few designs.
Configurable Logic Blocks
A number of architectural improvements contribute to the
increased logic density and performance levels of the
XC4000 families. The most important one is a more
powerful and flexible CLB surrounded by a versatile set of
routing resources, resulting in more “effective gates per
CLB.” The principal CLB elements are shown in Figure 1.
Each new CLB also packs a pair of flip-flops and two
independent 4-input function generators. The two function
generators offer designers plenty of flexibility because
most combinatorial logic functions need less than four
inputs. Consequently, the design-software tools can deal
with each function generator independently, thus improv-
ing cell usage.
Thirteen CLB inputs and four CLB outputs provide access
to the function generators and flip-flops. More than double
the number available in the XC3000 families, these inputs
and outputs connect to the programmable interconnect
resources outside the block. Four independent inputs are
provided to each of two function generators (F1 – F4 and
G1 – G4). These function generators, whose outputs are
labeled F' and G', are each capable of implementing any
arbitrarily defined Boolean function of their four inputs. The
function generators are implemented as memory look-up
tables; therefore, the propagation delay is independent of
the function being implemented. A third function genera-
tor, labeled H', can implement any Boolean function of its
three inputs: F' and G' and a third input from outside the
block (H1). Signals from the function generators can exit
the CLB on two outputs; F' or H' can be connected to the
X output, and G' or H' can be connected to the Y output.
Thus, a CLB can be used to implement any two independ-
ent functions of up-to-four variables, or any single function
of five variables, or any function of four variables together
with some functions of five variables , or it can implement
even some functions of up to nine variables. Implementing
wide functions in a single block reduces both the number
of blocks required and the delay in the signal path, achiev-
ing both increased density and speed.
The two storage elements in the CLB are edge-triggered
D-type flip-flops with common clock (K) and clock enable
(EC) inputs. A third common input (S/R) can be pro-
grammed as either an asynchronous set or reset signal
2-9