欢迎访问ic37.com |
会员登录 免费注册
发布采购

DCM4623TD2H31E0M00 参数 Datasheet PDF下载

DCM4623TD2H31E0M00图片预览
型号: DCM4623TD2H31E0M00
PDF下载: 下载PDF文件 查看货源
内容描述: [DC-DC Regulated Power Supply Module, 1 Output, 500W, Hybrid, PACKAGE-9]
分类和应用:
文件页数/大小: 25 页 / 2532 K
品牌: VICOR [ VICOR CORPORATION ]
 浏览型号DCM4623TD2H31E0M00的Datasheet PDF文件第17页浏览型号DCM4623TD2H31E0M00的Datasheet PDF文件第18页浏览型号DCM4623TD2H31E0M00的Datasheet PDF文件第19页浏览型号DCM4623TD2H31E0M00的Datasheet PDF文件第20页浏览型号DCM4623TD2H31E0M00的Datasheet PDF文件第22页浏览型号DCM4623TD2H31E0M00的Datasheet PDF文件第23页浏览型号DCM4623TD2H31E0M00的Datasheet PDF文件第24页浏览型号DCM4623TD2H31E0M00的Datasheet PDF文件第25页  
DCM4623xD2H31E0yzz  
Figure 21 shows a scenario where there is no bottom side cooling.  
In this case, the heat flow path to the bottom is left open and the  
equations now simplify to:  
C
OUT-EXT-x: electrolytic or tantalum capacitor, 200 µF ≤ C3 ≤2000 µF;  
C4, C5: additional ceramic /electrolytic capacitors, if needed for  
output ripple filtering;  
In order to help sensitive signal circuits reject potential noise,  
additional components are recommended:  
R2_x: 301 Ohm, facilitate noise attenuation for TR pin;  
FB1_x, C2_x: FB1 is a ferrite bead with an impedance of at least 10 Ω  
at 100MHz. C2_x can be a ceramic capacitor of 0.1uF. Facilitate noise  
attenuation for EN pin.  
TINT – PD1 θINT-TOP = TCASE_TOP  
TINT – PD3 θINT-LEADS = TLEADS  
PDTOTAL = PD1 + PD3  
Note: Use an RCR filter network as suggested in the application note  
AN:030 to reduce the noise on the signal pins.  
Thermal Resistance Top  
INT-TOP°C / W  
MAX INTERNAL TEMP  
θ
Note: In case of the excessive line inductance, a properly sized  
decoupling capacitor CDECOUPLE is required as shown in Figure 23  
and Figure 24.  
Thermal Resistance Bottom  
INT-BOTTOM°C / W  
Thermal Resistance Leads  
θ
θINT-LEADS°C / W  
+
T
CASE_BOTTOM(°C)  
TLEADS(°C)  
TCASE_TOP(°C)  
Power Dissipation (W)  
VTR VEN  
DCM1  
R2_1  
TR  
EN  
FB1_1  
C2_1  
FT  
R1_1  
L2_1  
F1_1  
+IN  
-IN  
+OUT  
-OUT  
+IN  
-IN  
+OUT  
-OUT  
L1_1  
C1_1  
CDECOUPLE  
COUT-EXT-1  
C4  
C5  
Figure 22 One side cooling thermal model  
DCM2  
R2_2  
TR  
EN  
FT  
FB1_2  
C2_2  
R1_2  
L1_2  
L2_2  
F1_2  
Figure 22 shows a scenario where there is no bottom side and leads  
cooling. In this case, the heat flow path to the bottom is left open and  
the equations now simplify to:  
+IN  
-IN  
+OUT  
-OUT  
C1_2  
COUT-EXT-2  
≈≈  
≈ ≈  
≈ ≈  
DCM8  
R2_8  
TR  
EN  
FT  
FB1_8  
TINT – PD1 θINT-TOP = TCASE_TOP  
C2_8  
R1_8  
R3  
L2_8  
F1_8  
PDTOTAL = PD1  
+IN  
-IN  
+OUT  
-OUT  
L1_8  
R4  
D1  
C1_8  
COUT-EXT-8  
Shared -IN Kelvin  
Vicor provides a suite of online tools, including a simulator and  
thermal estimator which greatly simplify the task of determining  
whether or not a DCM thermal configuration is sufficient for a given  
condition. These tools can be found at:  
Figure 23 DCM paralleling configuration circuit 1  
www.vicorpower.com/powerbench.  
When common mode noise rejection in the input side is needed,  
common mode chokes can be added in the input side of each DCM.  
An example of DCM paralleling circuit is shown below:  
Array Operation  
A decoupling network is needed to facilitate paralleling:  
n An output inductor should be added to each DCM, before the  
outputs are bussed together to provide decoupling.  
DCM1  
R2_1  
TR  
+
VTR1  
EN  
FT  
+
_
n Each DCM needs a separate input filter, even if the multiple DCMs  
share the same input voltage source. These filters limit the ripple  
current reflected from each DCM, and also help suppress  
generation of beat frequency currents that can result when  
multiple powertrains input stages are permitted to  
direclty interact.  
FB1_1  
C2_1  
VEN1  
_
R1_1  
L1_1  
R3_1  
SGND1  
L2_1  
F1_1  
+IN  
-IN  
+OUT  
-OUT  
+IN  
-IN  
+OUT  
-OUT  
R4_1  
D1_1  
CDECOUPLE  
C1_1  
COUT-EXT-1  
C4  
C5  
SGND1  
R2_2  
DCM2  
TR  
EN  
FT  
+
VTR2  
_
+
FB1_2  
C2_2  
VEN2  
_
R1_2  
L1_2  
R3_2  
SGND2  
L2_2  
F1_2  
+IN  
-IN  
+OUT  
-OUT  
R4_2  
D1_2  
C1_2  
COUT-EXT-2  
If signal pins (TR, EN, FT) are not used, they can be left floating, and  
DCM will work in the nominal output condition.  
SGND2  
≈≈  
≈ ≈  
DCM8  
When common mode noise in the input side is not a concern, TR and  
EN can be driven and FT received using a single Kelvin connection to  
the shared -IN as a reference.  
R2_8  
TR  
EN  
FT  
+
VTR8  
_
+
FB1_8  
C2_8  
VEN8  
_
R1_8  
L1_8  
R3_8  
SGND8  
L2_8  
F1_8  
+IN  
-IN  
+OUT  
-OUT  
R4_8  
D1_8  
C1_8  
COUT-EXT-8  
Note: For more information on parallel operation of DCMs, refer to  
“Parallel DCMs” application note AN:030.  
SGND8  
Figure 24 DCM paralleling configuration circuit 2  
An example of DCM paralleling circuit is shown in Figure 23.  
Notice that each group of control pins need to be individually driven  
and isolated from the other groups control pins. This is because -IN  
of each DCM can be at a different voltage due to the common mode  
chokes. Attempting to share control pin circuitry could lead to  
incorrect behavior of the DCMs.  
Recommended values to start with:  
L1_x: 1 µH, minimized DCR;  
R1_x: 1.0 Ω;  
C1_x: Ceramic capacitors in parallel, C1 = 2 µF;  
L2_x: L2 ≥ 0.15 µH;  
DCMDC-DC Converter  
Rev 1.2  
Page 21 of 25  
07/2017  
 复制成功!