欢迎访问ic37.com |
会员登录 免费注册
发布采购

US3007CW 参数 Datasheet PDF下载

US3007CW图片预览
型号: US3007CW
PDF下载: 下载PDF文件 查看货源
内容描述: 5位可编程同步降压加上非同步, LDO控制器和200MmA LDO ON BOARD [5 BIT PROGRAMMABLE SYNCHRONOUS BUCK PLUS NON SYNCHRONOUS , LDO CONTROLLER AND 200MmA LDO ON BOARD]
分类和应用: 控制器
文件页数/大小: 15 页 / 104 K
品牌: UNISEM [ UNISEM ]
 浏览型号US3007CW的Datasheet PDF文件第7页浏览型号US3007CW的Datasheet PDF文件第8页浏览型号US3007CW的Datasheet PDF文件第9页浏览型号US3007CW的Datasheet PDF文件第10页浏览型号US3007CW的Datasheet PDF文件第11页浏览型号US3007CW的Datasheet PDF文件第13页浏览型号US3007CW的Datasheet PDF文件第14页浏览型号US3007CW的Datasheet PDF文件第15页  
US3007  
Output Inductor Selection  
In our example for Vo = 2.8V and 14.2 A load , Assum-  
ing IRL3103 MOSFET for both switches with maximum  
onresistanceof19mW, we have :  
T = 1 / 200000 = 5 uSec  
Vsw =Vsync= 14.2*0.019=0.27 V  
D » ( 2.8 + 0.27 ) / ( 5 - 0.27 + 0.27 ) = 0.61  
Ton = 0.61 * 5 = 3.1 uSec  
Toff = 5 - 3.1 = 1.9 uSec  
DIr = ( 2.8 + 0.27 ) * 1.9 / 3 = 1.94 A  
DVo = 1.94 * .006 = .011 V = 11 mV  
The output inductance must be selected such that un-  
der low line and the maximum output voltage condition,  
the inductor current slope times the output capacitor  
ESR is ramping up faster than the capacitor voltage is  
drooping during a load current step. However if the in-  
ductor is too small , the output ripple current and ripple  
voltage become too large. One solution to bring the ripple  
current down is to increase the switching frequency ,  
however that will be at the cost of reduced efficiency and  
higher system cost. The following set of formulas are  
derived to achieve the optimum performance without  
many design iterations.  
Power Component Selection  
Vcore  
Assuming IRL3103 MOSFETs as power components,  
we will calculate the maximum power dissipation as fol-  
lows:  
The maximum output inductance is calculated using the  
following equation :  
L = ESR * C * ( Vinmin - Vomax ) / ( 2* DI )  
Where :  
Vinmin = Minimum input voltage  
For high side switch the maximum power dissipation  
happens at maximum Vo and maximum duty cycle.  
Dmax » ( 2.8 + 0.27 ) / ( 4.75 - 0.27 + 0.27 ) = 0.65  
Pdh = Dmax * Io^2*Rds(max)  
For Vo = 2.8 V , DI = 14.2 A  
L =0.006 * 9000 * ( 4.75 - 2.8) / (2 * 14.2) = 3.7 uH  
Assuming that the programmed switching frequency is  
set at 200 KHZ , an inductor is designed using the  
Micrometals’ powder iron core material. The summary  
of the design is outlined below :  
The selected core material is Powder Iron , the  
selected core is T50-52D from Micro Metal wounded  
with 8 Turns of # 16 AWG wire, resulting in 3 uH  
inductance with » 3 mW of DC resistance.  
Assuming L = 3 uH and the switching frequency ; Fsw =  
200 KHZ , the inductor ripple current and the output  
ripple voltage is calculated using the following set of  
equations :  
Pdh= 0.65*14.2^2*0.029=3.8 W  
Rds(max)=Maximum Rds-on of the MOSFET at 125°C  
For synch MOSFET, maximum power dissipation hap-  
pens at minimum Vo and minimum duty cycle.  
Dmin » ( 2 + 0.27 ) / ( 5.25 - 0.27 + 0.27 ) = 0.43  
Pds = (1-Dmin)*Io^2*Rds(max)  
Pds=(1 - 0.43) * 14.2^2 * 0.029 = 3.33 W  
3.3V Supply  
Again,for high side switch the maximum power dissipa-  
tion happens at maximum Vo and maximum duty cycle.  
The duty cycle equation for non synchronous replaces  
the forward voltage of the diode with the Synch MOSFET  
on voltage. In equation below, Vf=0.5V  
Dmax » ( 3.3 + 0.5 ) / ( 4.75 - 0.27 + 0.5 ) = 0.76  
Pdh = Dmax * Io^2*Rds(max)  
T = 1/Fsw  
T º Switching Period  
Pdh= 0.76*10^2*0.029=2.21 W  
D » ( Vo + Vsync ) / ( Vin - Vsw + Vsync )  
D º Duty Cycle  
Ton = D * T  
Rds(max)=Maximum Rds-on of the MOSFET at 125°C  
For diode, the maximum power dissipation happens at  
minimum Vo and minimum duty cycle.  
Vsw º High side Mosfet ON Voltage = Io * Rds  
Rds º Mosfet On Resistance  
Toff = T - Ton  
Dmin » ( 3.3 + 0.5 ) / ( 5.25 - 0.27 + 0.5 ) = 0.69  
Pdd = (1-Dmin)*Io*Vf=(1 - 0.69) * 10 * 0.5 = 1.55 W  
Vsync º Synchronous MOSFET ON Voltage=Io * Rds  
DIr = ( Vo + Vsync ) * Toff /L  
DIr º Inductor Ripple Current  
DVo = DIr * ESR  
Switcher Current Limit Protection  
The US3007 uses the MOSFET Rds-on as the sensing  
resistor to sense the MOSFET current and compares to  
a programmed voltage which is set externally via a re-  
sistor (Rcs) placed between the drain of the MOSFET  
and the “CS+” terminal of the IC as shown in the appli-  
cation circuit.  
DVo º Output Ripple Voltage  
Rev. 1.8  
12/8/00  
4-12  
 复制成功!