欢迎访问ic37.com |
会员登录 免费注册
发布采购

HV9925 参数 Datasheet PDF下载

HV9925图片预览
型号: HV9925
PDF下载: 下载PDF文件 查看货源
内容描述: 可编程电流LED灯驱动IC与PWM调光 [Programmable-Current LED Lamp Driver IC with PWM Dimming]
分类和应用: 驱动
文件页数/大小: 10 页 / 1302 K
品牌: SUPERTEX [ Supertex, Inc ]
 浏览型号HV9925的Datasheet PDF文件第2页浏览型号HV9925的Datasheet PDF文件第3页浏览型号HV9925的Datasheet PDF文件第4页浏览型号HV9925的Datasheet PDF文件第5页浏览型号HV9925的Datasheet PDF文件第6页浏览型号HV9925的Datasheet PDF文件第8页浏览型号HV9925的Datasheet PDF文件第9页浏览型号HV9925的Datasheet PDF文件第10页  
HV9925  
Step 1. Calculating L1.  
Step 6. Selecting input capacitor CIN  
Output Power = 41V 20mA = 820mW  
The output voltage VO = 10
·
VF ≈ 41V (max.). Use equation  
(1) assuming a 30% peak-to-peak ripple.  
Select CIN ECQ-E4104KF by Panasonic (0.1µF, 400V,  
Metalized Polyester Film).  
41V 10µs  
0.320mA  
L1=  
= 68mH  
Design Example 2  
Select L1 68mH, I=30mA. Typical SRF = 170KHz. Calculate  
the coil capacitance.  
Let us now design a PWM-dimmable LED lamp driver using  
the HV9925:  
1
1
CL =  
=
13pF  
L1(2π SRF)2 68mH(2π ⋅170KHz)2  
Input:  
Output Current: 50mA  
Load:  
String of 12 LED (Power TOPLED® by  
OSRAM, VF = 2.5V max. each)  
Universal AC, 85-135VAC  
Step 2. Selecting D1  
Usually, the reverse recovery characteristics of ultra-  
fast rectifiers at IF = 20~50mA are not provided in the  
manufacturer’s data books. The designer may want to  
experiment with different diodes to achieve the best result.  
The schematic diagram of the LED driver is shown in Fig.3.  
We will use an aluminum electrolytic capacitor for CIN in order  
to prevent interruptions of the LED current at zero crossings  
of the input voltage. As a“rule of thumb”, 2~3μF per each  
watt of the input power is required for CIN in this case.  
Select D1 MUR160 with VR = 600V, trr ≈ 20ns (IF = 20mA, IRR  
= 100mA) and CJ ≈ 8pF (VF>50V).  
Step 1. Calculating L1.  
Step 3. Calculating total parasitic capacitance using:  
The output voltage VO = 12 · VF = 30V (max.). Use equation  
(1) assuming a 30% peak-to-peak ripple.  
30V 10.5µs  
(3)  
CP = 5pF + 5pF +13pF + 8pF = 31pF  
L1=  
= 21mH  
Step 4. Calculating the leading edge spike duration using:  
(4), (5)  
0.350mA  
Select L1 22mH, I = 60mA. Typical SRF = 270KHz. Calculate  
the coil capacitance.  
264V 2 31pF  
TSPIKE  
=
+ 20ns 136ns < TBLANK(MIN)  
100mA  
1
1
CL =  
=
15pF  
L1(2π SRF)2 22mH(2π ⋅ 270KHz)2  
Step 5. Estimating power dissipation in HV9925 at 264VAC  
using (8) and (10)  
Step 2. Selecting D1  
Select D1 ES1G with VR = 400V, trr ≈ 35ns and CJ < 10pF.  
Let us assume that the overall efficiency η = 0.7.  
Switching power loss:  
Step 3. Calculating total parasitic capacitance using: (3)  
CP = 5pF + 5pF +13pF + 8pF = 31pF  
1
41V  
0.7  
PSWITCH  
264V 31pF + 2100mA 20ns 264V −  
(
)
210µs  
PSWITCH 125mW  
Step 4. Calculating the leading edge spike duration using  
(4), (5)  
Minimum duty ratio:  
135V 2 35pF  
TSPIKE  
=
+ 35ns 100ns < TBLANK(MIN)  
100mA  
Dm = 0.7141V /(0.7264V) 0.16  
Step 5. Estimating power dissipation in HV9925 at 135VAC  
using (6), (7) and (9)  
Conduction power loss:  
PCOND = 0.2520mA 2 210Ω + 0.63200µA 264V 55mW  
(
)
Switching power loss:  
Total power dissipation at VAC(max)  
:
135V 2 30V /0.7  
FS =  
= 78kHz  
135V 2 10µs  
PTOTAL = 125mW + 55mW = 180mW  
NR021506  
7
 复制成功!