GENERAL DESCRIPTION
The Am29DL640H is a 64 megabit, 3.0 volt-only flash
memory device, organized as 4,194,304 words of 16
bits each or 8,388,608 bytes of 8 bits each. Word
mode data appears on DQ15–DQ0; byte mode data
appears on DQ7–DQ0. The device is designed to be
programmed in-system with the standard 3.0 volt VCC
supply, and can also be programmed in standard
EPROM programmers.
Factory locked parts provide several options. The Se-
cured Silicon Sector may store a secure, random 16
byte ESN (Electronic Serial Number), customer code
(programmed through AMD’s ExpressFlash service),
or both. Customer Lockable parts may utilize the Se-
cured Silicon Sector as bonus space, reading and writ-
ing like any other flash sector, or may permanently
lock their own code there.
The device is available with an access time of 55, 60,
70, or 90 ns and is offered in 48-pin TSOP and 63-ball
Fine Pitch BGA packages. Standard control
pins—chip enable (CE#), write enable (WE#), and out-
put enable (OE#)—control normal read and write op-
erations, and avoid bus contention issues.
DMS (Data Management Software) allows systems
to easily take advantage of the advanced architecture
of the simultaneous read/write product line by allowing
removal of EEPROM devices. DMS will also allow the
system software to be simplified, as it will perform all
functions necessary to modify data in file structures,
as opposed to single-byte modifications. To write or
update a particular piece of data (a phone number or
configuration data, for example), the user only needs
to state which piece of data is to be updated, and
where the updated data is located in the system. This
is an advantage compared to systems where
user-written software must keep track of the old data
location, status, logical to physical translation of the
data onto the Flash memory device (or memory de-
vices), and more. Using DMS, user-written software
does not need to interface with the Flash memory di-
rectly. Instead, the user's software accesses the Flash
memory by calling one of only six functions. AMD pro-
vides this software to simplify system design and soft-
ware integration efforts.
The device requires only a single 3.0 volt power sup-
ply for both read and write functions. Internally gener-
ated and regulated voltages are provided for the
program and erase operations.
Simultaneous Read/Write Operations with
Zero Latency
The Simultaneous Read/Write architecture provides
simultaneous operation by dividing the memory
space into four banks, two 8 Mb banks with small and
large sectors, and two 24 Mb banks of large sectors.
Sector addresses are fixed, system software can be
used to form user-defined bank groups.
During an Erase/Program operation, any of the three
non-busy banks may be read from. Note that only two
banks can operate simultaneously. The device can im-
prove overall system performance by allowing a host
system to program or erase in one bank, then
immediately and simultaneously read from the other
bank, with zero latency. This releases the system from
waiting for the completion of program or erase
operations.
The device offers complete compatibility with the
JEDEC 42.4 single-power-supply Flash command
set standard. Commands are written to the command
register using standard microprocessor write timings.
Reading data out of the device is similar to reading
from other Flash or EPROM devices.
The host system can detect whether a program or
erase operation is complete by using the device sta-
tus bits: RY/BY# pin, DQ7 (Data# Polling) and
DQ6/DQ2 (toggle bits). After a program or erase cycle
has been completed, the device automatically returns
to the read mode.
The Am29DL640H can be organized as both a top and
bottom boot sector configuration.
Bank
Megabits
Sector Sizes
Eight 8 Kbyte/4 Kword,
Fifteen 64 Kbyte/32 Kword
Bank 1
8 Mb
The sector erase architecture allows memory sec-
tors to be erased and reprogrammed without affecting
the data contents of other sectors. The device is fully
erased when shipped from the factory.
Bank 2
Bank 3
24 Mb
24 Mb
Forty-eight 64 Kbyte/32 Kword
Forty-eight 64 Kbyte/32 Kword
Eight 8 Kbyte/4 Kword,
Fifteen 64 Kbyte/32 Kword
Bank 4
8 Mb
Hardware data protection measures include a low
VCC detector that automatically inhibits write opera-
tions during power transitions. The hardware sector
protection feature disables both program and erase
operations in any combination of the sectors of mem-
ory. This can be achieved in-system or via program-
ming equipment.
Am29DL640H Features
The Secured Silicon Sector is an extra 256 byte sec-
tor capable of being permanently locked by AMD or
customers. The Secured Silicon Customer Indicator
Bit (DQ6) is permanently set to 1 if the part has been
customer locked, permanently set to 0 if the part has
been factory locked, and is 0 if customer lockable. This
way, customer lockable parts can never be used to re-
place a factory locked part.
The device offers two power-saving features. When
addresses have been stable for a specified amount of
time, the device enters the automatic sleep mode.
The system can also place the device into the
standby mode. Power consumption is greatly re-
duced in both modes.
2
Am29DL640H
June 7, 2005