欢迎访问ic37.com |
会员登录 免费注册
发布采购

MAX1634EAI 参数 Datasheet PDF下载

MAX1634EAI图片预览
型号: MAX1634EAI
PDF下载: 下载PDF文件 查看货源
内容描述: 多路输出,低噪声电源控制器,用于笔记本电脑 [Multi-Output, Low-Noise Power-Supply Controllers for Notebook Computers]
分类和应用: 电脑控制器
文件页数/大小: 28 页 / 240 K
品牌: MAXIM [ MAXIM INTEGRATED PRODUCTS ]
 浏览型号MAX1634EAI的Datasheet PDF文件第17页浏览型号MAX1634EAI的Datasheet PDF文件第18页浏览型号MAX1634EAI的Datasheet PDF文件第19页浏览型号MAX1634EAI的Datasheet PDF文件第20页浏览型号MAX1634EAI的Datasheet PDF文件第22页浏览型号MAX1634EAI的Datasheet PDF文件第23页浏览型号MAX1634EAI的Datasheet PDF文件第24页浏览型号MAX1634EAI的Datasheet PDF文件第25页  
Mu lt i-Ou t p u t , Lo w -No is e P o w e r-S u p p ly  
Co n t ro lle rs fo r No t e b o o k Co m p u t e rs  
0–MAX1635  
Rectifier Diode D3  
2
PD(upper FET)= (I  
)
x R  
x DUTY  
DS(ON)  
LOAD  
(Transformer Secondary Diode)  
The secondary diode in coupled-inductor applications  
mus t withs ta nd flyb a c k volta g e s g re a te r tha n 60V,  
whic h us ua lly rule s out mos t Sc hottky re c tifie rs .  
Common silicon rectifiers, such as the 1N4001, are also  
prohibited because they are too slow. This often makes  
fast silicon rectifiers such as the MURS120 the only  
choice. The flyback voltage across the rectifier is relat-  
V
x C  
RSS  
IN  
+ V x I  
x f x  
+ 20ns  
IN  
LOAD  
I
GATE  
2
PD(lower FET) = (I  
)
x R  
x (1 - DUTY)  
DS(ON)  
LOAD  
DUTY = (V  
+ V ) / (V - V )  
Q2 IN Q1  
OUT  
where: on-state voltage drop V = I  
x R  
DS(ON)  
ed to the V - V  
difference, according to the trans-  
Q_  
LOAD  
IN  
OUT  
former turns ratio:  
C
= MOSFET reverse transfer capacitance  
RSS  
I
= DH driver peak output current capabil-  
ity (1A typical)  
V
= V  
+ (V - V  
) x N  
GATE  
FLYBACK  
SEC  
IN OUT  
20ns = DH driver inherent rise/fall time  
where: N = the transformer turns ratio SEC/PRI  
V
= the ma ximum s e c ond a ry DC outp ut  
voltage  
Under output short-circuit, the MAX1633/MAX1634/  
MAX1635s synchronous rectifier MOSFET suffers extra  
stress because its duty factor can increase to greater  
than 0.9. It may need to be oversized to tolerate a con-  
tinuous DC s hort c irc uit. During s hort c irc uit, the  
MAX1630/MAX1631/MAX1632s output undervoltage  
shutdown protects the synchronous rectifier under out-  
put short-circuit conditions.  
SEC  
V
OUT  
= the primary (main) output voltage  
Subtract the main output voltage (V  
in this equation if the secondary winding is returned to  
and not to ground. The diode reverse breakdown  
rating must also accommodate any ringing due to leak-  
age inductance. D3s current rating should be at least  
twice the DC load current on the secondary output.  
) from V  
OUT FLYBACK  
V
OUT  
To reduce EMI, add a 0.1µF ceramic capacitor from the  
high-side switch drain to the low-side switch source.  
Lo w -Vo lt a g e Op e ra t io n  
Low input voltages and low input-output differential  
voltages each require extra care in their design. Low  
absolute input voltages can cause the VL linear regula-  
tor to enter dropout and eventually shut itself off. Low  
input voltages relative to the output (low V -V  
ferential) can cause bad load regulation in multi-output  
flyback applications (see the design equations in the  
Rectifier Clamp Diode  
The rectifier is a clamp across the low-side MOSFET  
that catches the negative inductor swing during the  
60ns dead time between turning one MOSFET off and  
each low-side MOSFET on. The latest generations of  
MOSFETs incorporate a high-speed silicon body diode,  
which serves as an adequate clamp diode if efficiency  
is not of primary importance. A Schottky diode can be  
placed in parallel with the body diode to reduce the for-  
ward voltage drop, typically improving efficiency 1% to  
2%. Use a diode with a DC current rating equal to one-  
third of the load current; for example, use an MBR0530  
(500mA-rated) type for loads up to 1.5A, a 1N5819 type  
for loads up to 3A, or a 1N5822 type for loads up to  
10A. The rectifiers rated reverse breakdown voltage  
must be at least equal to the maximum input voltage,  
preferably with a 20% derating factor.  
dif-  
IN OUT  
Transformer Design section). Also, low V -V  
differ-  
IN OUT  
entials can also cause the output voltage to sag when  
the load current changes abruptly. The amplitude of the  
sag is a function of inductor value and maximum duty  
factor (an Electrical Characteristics parameter, 98%  
guaranteed over temperature at f = 200kHz), as follows:  
2
(I  
)
x L  
x D  
STEP  
V
=
SAG  
2 x C  
x (V  
- V  
)
OUT  
IN(MAX)  
MAX OUT  
Boost-Supply Diode D2  
A signal diode such as a 1N4148 works well in most  
applications. If the input voltage can go below +6V, use  
a small (20mA) Schottky diode for slightly improved  
efficiency and dropout characteristics. Dont use large  
power diodes, such as 1N5817 or 1N4001, since high  
junction capacitance can pump up VL to excessive  
voltages.  
The cure for low-voltage sag is to increase the output  
capacitors value. For example, at V = +5.5V, V  
=
OUT  
IN  
+5V, L = 10µH, f = 200kHz, I  
= 3A, a total capaci-  
STEP  
tance of 660µF keeps the sag less than 200mV. Note  
that only the capacitance requirement increases, and  
the ESR requirements dont change. Therefore, the  
added capacitance can be supplied by a low-cost bulk  
capacitor in parallel with the normal low-ESR capacitor.  
______________________________________________________________________________________ 21  
 复制成功!