欢迎访问ic37.com |
会员登录 免费注册
发布采购

MBRS340T3 参数 Datasheet PDF下载

MBRS340T3图片预览
型号: MBRS340T3
PDF下载: 下载PDF文件 查看货源
内容描述: 42V , 2.5A , 2MHz,降压型开关稳压器与2.7μA静态电流 [42V, 2.5A, 2MHz Step-Down Switching Regulator with 2.7μA Quiescent Current]
分类和应用: 稳压器二极管开关光电二极管
文件页数/大小: 24 页 / 293 K
品牌: Linear [ Linear ]
 浏览型号MBRS340T3的Datasheet PDF文件第13页浏览型号MBRS340T3的Datasheet PDF文件第14页浏览型号MBRS340T3的Datasheet PDF文件第15页浏览型号MBRS340T3的Datasheet PDF文件第16页浏览型号MBRS340T3的Datasheet PDF文件第18页浏览型号MBRS340T3的Datasheet PDF文件第19页浏览型号MBRS340T3的Datasheet PDF文件第20页浏览型号MBRS340T3的Datasheet PDF文件第21页  
LT3975  
APPLICATIONS INFORMATION  
robust for a wide input voltage range. A diode with even  
higher current rating can be selected for the worst-case  
scenarioofoverload,wherethemaxdiodecurrentcanthen  
increase to the typical peak switch current. Short circuit is  
not the worst-case condition due to current limit foldback.  
Peakreversevoltageisequaltotheregulatorinputvoltage.  
For inputs up to 40V, a 40V diode is adequate.  
Table 4. Schottky Diodes. The Reverse Current Values Listed  
Are Estimates Based Off of Typical Curves for Reverse Current  
vs Reverse Voltage at 25°C  
V at  
I at  
R
R
25°C  
(µA)  
F
V at 3A 3A MAX V = 20V  
F
TYP 25°C  
25°C  
(mV)  
PART NUMBER V (V)  
I
(A)  
AVE  
(mV)  
R
On Semiconductor  
MBRA340T3  
MBRS340T3  
MBRD340  
Diodes Inc.  
B340A  
40  
40  
40  
3
410  
410  
450  
450  
500  
600  
10  
10  
4
An additional consideration is reverse leakage current.  
When the catch diode is reversed biased, any leakage  
current will appear as load current. When operating under  
light load conditions, the low supply current consumed  
by the LT3975 will be optimized by using a catch diode  
with minimum reverse leakage current. Low leakage  
Schottky diodes often have larger forward voltage drops  
at a given current, so a trade-off can exist between low  
load and high load efficiency. Often Schottky diodes with  
larger reverse bias ratings will have less leakage at a given  
output voltage than a diode with a smaller reverse bias  
rating. Therefore, superior leakage performance can be  
achieved at the expense of diode size. Table 4 lists several  
Schottky diodes and their manufacturers.  
3
3
40  
40  
60  
40  
60  
40  
30  
30  
60  
40  
40  
3
3
3
3
3
3
3
3
3
2
2
485  
400  
600  
450  
570  
420  
390  
460  
580  
500  
700  
500  
450  
700  
490  
620  
470  
430  
500  
650  
2
100  
50  
4
B340LA  
B360A  
PDS340  
PDS360  
0.45  
40  
100  
12  
1.7  
4
SBR3U40P1  
SBR3U30P1  
SBR3M30P1  
SBR3U60P1  
DFLS240L  
DFLS240  
1
BOOST and OUT Pin Considerations  
CapacitorC3andtheinternalboostSchottkydiode(seethe  
Block Diagram) are used to generate a boost voltage that  
is higher than the input voltage. In most cases a 0.47μF  
capacitor will work well. The BOOST pin must be more  
than 1.8V above the SW pin for best efficiency and more  
than 2.6V above the SW pin to allow the LT3975 to skip  
off times to achieve very high duty cycles. For outputs  
between 3.2V and 16V, the standard circuit with the OUT  
pinconnectedtotheoutput(Figure4a)isbest. Below3.2V  
the internal Schottky diode may not be able to sufficiently  
charge the boost capacitor. Above 16V, the OUT pin abs  
max is violated. For outputs between 2.5V and 3.2V, an  
external Schottky diode to the output is sufficient because  
anexternalSchottkywillhavemuchlowerforwardvoltage  
drop than the internal boost diode.  
For output voltages less than 2.5V, there are two options.  
An external Schottky diode can charge the boost capaci-  
tor from the input (Figure 4c) or from an external voltage  
source (Figure 4d). Using an external voltage source is the  
better option because it is more efficient than charging the  
boost capacitor from the input. However, such a voltage  
rail is not always available in all systems. For output volt-  
ages greater than 16V, an external Schottky diode from  
an external voltage source should be used to charge the  
boost capacitor (Figure 4e). In applications using an ex-  
ternal voltage source, the supply should be between 3.1V  
and 16V. When using the input, the input voltage may not  
exceed 27V. In all cases, the maximum voltage rating of  
the BOOST pin must not be exceeded.  
3975f  
17  
 复制成功!