欢迎访问ic37.com |
会员登录 免费注册
发布采购

AS7C3364NTD36B-166TQCN 参数 Datasheet PDF下载

AS7C3364NTD36B-166TQCN图片预览
型号: AS7C3364NTD36B-166TQCN
PDF下载: 下载PDF文件 查看货源
内容描述: [ZBT SRAM, 64KX36, 3.5ns, CMOS, PQFP100, 14 X 20 MM, LEAD FREE, TQFP-100]
分类和应用: 静态存储器内存集成电路
文件页数/大小: 19 页 / 437 K
品牌: ISSI [ INTEGRATED SILICON SOLUTION, INC ]
 浏览型号AS7C3364NTD36B-166TQCN的Datasheet PDF文件第1页浏览型号AS7C3364NTD36B-166TQCN的Datasheet PDF文件第2页浏览型号AS7C3364NTD36B-166TQCN的Datasheet PDF文件第3页浏览型号AS7C3364NTD36B-166TQCN的Datasheet PDF文件第5页浏览型号AS7C3364NTD36B-166TQCN的Datasheet PDF文件第6页浏览型号AS7C3364NTD36B-166TQCN的Datasheet PDF文件第7页浏览型号AS7C3364NTD36B-166TQCN的Datasheet PDF文件第8页浏览型号AS7C3364NTD36B-166TQCN的Datasheet PDF文件第9页  
AS7C3364NTD32B  
AS7C3364NTD36B  
®
Functional description  
The AS7C3364NTD36B family is a high performance CMOS 2 Mbit synchronous Static Random Access Memory (SRAM)  
organized as 65,536 words × 32 or 36 bits and incorporates a LATE LATE Write.  
This variation of the 2Mb sychronous SRAM uses the No Turnaround Delay (NTD ) architecture, featuring an enhanced  
write operation that improves bandwidth over pipeline burst devices. In a normal pipeline burst device, the write data,  
command, and address are all applied to the device on the same clock edge. If a read command follows this write command,  
the system must wait for two 'dead' cycles for valid data to become available. These dead cycles can significantly reduce  
overall bandwidth for applications requiring random access or read-modify-write operations.  
NTD devices use the memory bus more efficiently by introducing a write 'latency' which matches the two (one) cycle  
pipeline (flowthrough) read latency. Write data is applied two cycles after the write command and address, allowing the read  
pipeline to clear. With NTD , write and read operations can be used in any order without producing dead bus cycles.  
Assert R/W low to perform write cycles. Byte write enable controls write access to specific bytes, or can be tied low for full  
32/36 bit writes. Write enable signals, along with the write address, are registered on a rising edge of the clock. Write data is  
applied to the device two clock cycles later. Unlike some asynchronous SRAMs, output enable OE does not need to be toggled  
for write operations; it can be tied low for normal operations. Outputs go to a high impedance state when the device is de-  
selected by any of the three chip enable inputs (refer to synchronous truth table on page 6.) In pipeline mode, a two cycle  
deselect latency allows pending read or write operations to be completed.  
Use the ADV (burst advance) input to perform burst read, write and deselect operations. When ADV is high, external  
addresses, chip select, R/W pins are ignored, and internal address counters increment in the count sequence specified by the  
LBO control. Any device operations, including burst, can be stalled using the CEN=1, the clock enable input.  
The AS7C3364NTD36B and AS7C3364NTD32B operate with a 3.3V ± 5% power supply for the device core (V ). DQ  
DD  
circuits use a separate power supply (V  
14×20 mm TQFP package.  
) that operates across 3.3V or 2.5V ranges. These devices are available in a 100-pin  
DDQ  
TQFP Capacitance  
Parameter  
Input capacitance  
I/O capacitance  
Symbol  
Test conditions  
V = 0V  
Min  
Max  
Unit  
pF  
*
C
-
-
5
7
IN  
in  
*
C
V = V = 0V  
pF  
I/O  
in  
out  
*Guranteed not tested  
TQFP thermal resistance  
Description  
Conditions  
Symbol  
Typical  
40  
Units  
°C/W  
°C/W  
1–layer  
4–layer  
θJA  
θJA  
Thermal resistance  
(junction to ambient)1  
Test conditions follow standard test methods and  
procedures for measuring thermal impedance,  
per EIA/JESD51  
22  
Thermal resistance  
θJC  
8
°C/W  
(junction to top of case)1  
1 This parameter is sampled  
4/28/05; v.1.3  
Alliance Semiconductor  
P. 4 of 19