欢迎访问ic37.com |
会员登录 免费注册
发布采购

IRLR024 参数 Datasheet PDF下载

IRLR024图片预览
型号: IRLR024
PDF下载: 下载PDF文件 查看货源
内容描述: 5位可编程同步降压,非同步,可调​​LDO至200mA内置的LDO [5-BIT PROGRAMMABLE SYNCHRONOUS BUCK, NON-SYNCHRONOUS,ADJUSTABLE LDO AND 200mA ON-BOARD LDO]
分类和应用:
文件页数/大小: 17 页 / 101 K
品牌: INFINEON [ Infineon ]
 浏览型号IRLR024的Datasheet PDF文件第9页浏览型号IRLR024的Datasheet PDF文件第10页浏览型号IRLR024的Datasheet PDF文件第11页浏览型号IRLR024的Datasheet PDF文件第12页浏览型号IRLR024的Datasheet PDF文件第14页浏览型号IRLR024的Datasheet PDF文件第15页浏览型号IRLR024的Datasheet PDF文件第16页浏览型号IRLR024的Datasheet PDF文件第17页  
IRU3007  
PDH = DMAX×Io2×RDS(MAX)  
PDH = 0.76×102×0.029 = 2.21W  
To select the heat sink for the LDO MOSFET the first  
step is to calculate the maximum power dissipation of  
the device and then follow the same procedure as for the  
switcher.  
RDS(MAX) = Maximum RDS(ON) of the MOSFET at 1258C  
For diode, the maximum power dissipation happens at  
minimum Vo and minimum duty cycle.  
Where:  
PD = Power Dissipation of the Linear Regulator  
IL = Linear Regulator Load Current  
DMIN » (3.3 + 0.5) / (5.25 - 0.27 + 0.5) = 0.69  
PDD = (1 - DMIN)×Io×Vf  
For the 1.5V and 2A load:  
PD = (VIN - Vo)×IL  
PDD = (1 - 0.69)×10×0.5 = 1.55W  
Switcher Current Limit Protection  
The IRU3007 uses the MOSFET RDS(ON) as the sensing  
PD = (3.3 - 1.5)×2 = 3.6W  
resistor to sense the MOSFET current and compares to Assuming TJ(MAX) = 1258C:  
a programmed voltage which is set externally via a re-  
sistor (Rcs) placed between the drain of the MOSFET  
and the “CS+” terminal of the IC as shown in the appli-  
cation circuit.  
Ts = TJ - PD×(θJC + θcs)  
Ts = 125 - 3.6×(1.8 + 0.05) = 1188C  
With the maximum heat sink temperature calculated in  
the previous step, the heat-sink-to-air thermal resistance  
For example, if the desired current limit point is set to (θSA) is calculated as follows:  
be 22A for the synchronous and 16A for the non syn-  
chronous, and from our previous selection, the maxi- Assuming TA = 358C:  
mum MOSFET RDS(ON)=19mW, then the current sense  
resistor Rcs is calculated as:  
T = Ts - TA = 118 - 35 = 838C  
Temperature Rise Above Ambient  
θSA = T / PD = 83 / 3.6 = 238C/W  
Vcore  
The same heat sink as the one selected for the switcher  
MOSFETs is also suitable for the 1.5V regulator.  
Vcs = ICL×RDS = 22×0.019 = 0.418V  
Rcs = Vcs / IB = (0.418V) / (200µA) = 2.1KΩ  
Where:  
2.5V Clock Supply  
IB=200µA is the internal current setting of the The IRU3007 provides a complete 2.5V regulator with a  
IRU3007  
minimum of 200mA current capability. The internal regu-  
lator has short circuit protection with internal thermal  
shutdown.  
3.3V supply  
Vcs = ICL×RDS = 16×0.019 = 0.3V  
Rcs = Vcs / IB = (0.3V) / (200µA) = 1.50KΩ  
1.5V and 2.5V Supply Resistor Divider Selection  
Since the internal voltage reference for the linear regula-  
1.5V, GTL+ Supply LDO Power MOSFET Selection tors is set at 1.26V for IRU3007, there is a need to use  
The first step in selecting the power MOSFET for the external resistor dividers to step up the voltage. The re-  
1.5V linear regulator is to select its maximum RDS(ON) of sistor dividers are selected using the following equations:  
the pass transistor based on the input to output Dropout  
Vo = (1 + Rt / RB)×VREF  
voltage and the maximum load current.  
Where:  
Rt = Top resistor divider  
RB = Bottom resistor divider  
For Vo = 1.5V, VIN = 3.3V and IL = 2A:  
RDS(MAX) = (VIN - Vo) / IL = (3.3 - 1.5) / 2 = 0.9Ω  
Note: Since the MOSFETs RDS(ON) increases with tem-  
perature, this number must be divided by » 1.5, in order  
VREF = 1.26V typical  
to find the RDS(ON) max at room temperature. The Motorola For 1.5V supply  
MTP3055VL has a maximum of 0.18RDS(ON) at room Assuming RB = 1K:  
temperature, which meets our requirement.  
Rt = RB×[(Vo / VREF) - 1]  
Rt = 1×[(1.5 / 1.26) - 1] = 191Ω  
Rev. 2.1  
08/20/02  
www.irf.com  
13