欢迎访问ic37.com |
会员登录 免费注册
发布采购

EBE41AE4ABHA 参数 Datasheet PDF下载

EBE41AE4ABHA图片预览
型号: EBE41AE4ABHA
PDF下载: 下载PDF文件 查看货源
内容描述: 注册4GB DDR2 SDRAM DIMM [4GB Registered DDR2 SDRAM DIMM]
分类和应用: 动态存储器双倍数据速率
文件页数/大小: 27 页 / 228 K
品牌: ELPIDA [ ELPIDA MEMORY ]
 浏览型号EBE41AE4ABHA的Datasheet PDF文件第15页浏览型号EBE41AE4ABHA的Datasheet PDF文件第16页浏览型号EBE41AE4ABHA的Datasheet PDF文件第17页浏览型号EBE41AE4ABHA的Datasheet PDF文件第18页浏览型号EBE41AE4ABHA的Datasheet PDF文件第20页浏览型号EBE41AE4ABHA的Datasheet PDF文件第21页浏览型号EBE41AE4ABHA的Datasheet PDF文件第22页浏览型号EBE41AE4ABHA的Datasheet PDF文件第23页  
EBE41AE4ABHA  
ODT AC Electrical Characteristics (DDR2 SDRAM Component Specification)  
Parameter  
Symbol  
tAOND  
tAON  
min.  
max.  
Unit  
tCK  
ps  
Notes  
1, 3  
ODT turn-on delay  
2
2
ODT turn-on  
tAC(min)  
tAC(max) + 700  
2tCK + tAC(max) + 1000  
2.5  
ODT turn-on (power down mode)  
ODT turn-off delay  
tAONPD  
tAOFD  
tAOF  
tAC(min) + 2000  
ps  
2.5  
tCK  
ps  
5
ODT turn-off  
tAC(min)  
tAC(max) + 600  
2, 4, 5  
ODT turn-off (power down mode)  
ODT to power down entry latency  
ODT power down exit latency  
tAOFPD  
tANPD  
tAXPD  
tAC(min) + 2000  
2.5tCK + tAC(max) + 1000 ps  
3
8
3
8
tCK  
tCK  
Notes: 1. ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on.  
ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND.  
2. ODT turn off time min is when the device starts to turn off ODT resistance.  
ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD.  
3. When the device is operated with input clock jitter, this parameter needs to be derated by the actual  
tERR(6-10per) of the input clock. (output deratings are relative to the SDRAM input clock.)  
4. When the device is operated with input clock jitter, this parameter needs to be derated by  
{tJIT(duty) max. tERR(6-10per) max. } and { tJIT(duty) min. tERR(6-10per) min. } of the actual input  
clock.(output deratings are relative to the SDRAM input clock.)  
For example, if the measured jitter into a DDR2-667 SDRAM has tERR(6-10per) min. = 272ps,  
tERR(6-10per) max. = +293ps, tJIT(duty) min. = 106ps and tJIT(duty) max. = +94ps, then  
tAOF min.(derated) = tAOF min. + { tJIT(duty) max. tERR(6-10per) max. } = 450ps + { 94ps 293ps}  
= 837ps and tAOF max.(derated) = tAOF max. + { tJIT(duty) min. tERR(6-10per) min. } = 1050ps +  
{ 106ps + 272ps} = +1428ps.  
5. For tAOFD of DDR2-667, the 1/2 clock of nCK in the 2.5 × nCK assumes a tCH(avg), average input clock  
high pulse width of 0.5 relative to tCK(avg). tAOF min. and tAOF max. should each be derated by the  
same amount as the actual amount of tCH(avg) offset present at the DRAM input with respect to 0.5. For  
example, if an input clock has a worst case tCH(avg) of 0.48, the tAOF min. should be derated by  
subtracting 0.02 × tCK(avg) from it, whereas if an input clock has a worst case tCH(avg) of 0.52,  
the tAOF max. should be derated by adding 0.02 × tCK(avg) to it. Therefore, we have;  
tAOF min.(derated) = tAC min. [0.5 Min.(0.5, tCH(avg) min.)] × tCK(avg)  
tAOF max.(derated) = tAC max. + 0.6 + [Max.(0.5, tCH(avg) max.) 0.5] × tCK(avg)  
or  
tAOF min.(derated) = Min.(tAC min., tAC min. [0.5 tCH(avg) min.] × tCK(avg))  
tAOF max.(derated) = 0.6 + Max.(tAC max., tAC max. + [tCH(avg) max. 0.5] × tCK(avg))  
where tCH(avg) min. and tCH(avg) max. are the minimum and maximum of tCH(avg) actually measured  
at the DRAM input balls.  
Data Sheet E0901E20 (Ver. 2.0)  
19  
 复制成功!