欢迎访问ic37.com |
会员登录 免费注册
发布采购

CS1601 参数 Datasheet PDF下载

CS1601图片预览
型号: CS1601
PDF下载: 下载PDF文件 查看货源
内容描述: 数字PFC控制器,用于电子镇流器 [Digital PFC Controller for Electronic Ballasts]
分类和应用: 功率因数校正电子控制器
文件页数/大小: 16 页 / 789 K
品牌: CIRRUS [ CIRRUS LOGIC ]
 浏览型号CS1601的Datasheet PDF文件第7页浏览型号CS1601的Datasheet PDF文件第8页浏览型号CS1601的Datasheet PDF文件第9页浏览型号CS1601的Datasheet PDF文件第10页浏览型号CS1601的Datasheet PDF文件第12页浏览型号CS1601的Datasheet PDF文件第13页浏览型号CS1601的Datasheet PDF文件第14页浏览型号CS1601的Datasheet PDF文件第15页  
CS1601  
For optimal performance, resistors RIAC & RIFB should use 1%  
tolerance or better resistors for best Vlink voltage accuracy.  
5.5 PFC Output Capacitor  
The value of the PFC output capacitor should be chosen  
based upon voltage ripple and hold-up requirements. To  
ensure system stability with the digital controller, the  
recommended value of the capacitor is within the range of  
0.25F/watt to 0.5F/watt with a Vlink voltage of 460V.  
5.7 Valley Switching  
The zero-current detection (ZCD) pin is monitored for  
demagnetization in the auxiliary winding of the boost inductor  
(LB). The ZCD circuit is designed to detect the VAux  
valley/zero crossings by sensing the voltage transformed onto  
the auxiliary winding of LB.  
5.6 Output IFB Sense & Input IAC Sense  
A current proportional to the PFC output voltage, Vlink, is  
supplied to the IC on pin IFB and is used as a feedback control  
signal. This current is compared against an internal fixed-  
value reference current.  
LB  
V
link  
N:1  
D2  
FET Drain  
The ADC is used to measure the magnitude of the IIFB current  
through resistor RIFB. The magnitude of the IIFB current is then  
compared to an internal reference current of (Iref) 129A.  
CS1601  
IAux  
Vlink  
R3  
IZCD  
ZCD_below_zero  
5
+
R5  
ZCD  
+
VAux  
-
-
Vth( ZCD)  
IFB  
RIFB  
Demag  
Comparator  
V DD  
R4  
Cp  
8
R6  
CS1601  
15k  
24k  
Figure 20. ZCD Input Pin Model  
IFB  
1
ADC  
The objective of zero-voltage switching is to initiate each  
MOSFET switching cycle when its drain-source voltage is at  
the lowest possible voltage potential, thus reducing switching  
losses. CS1601 uses an auxiliary winding on the PFC boost  
inductor to implement zero-voltage switching.  
Figure 18. IFB Input Pin Model  
Resistor RIFB sets the feedback current and is calculated as  
follows:  
Zero Crossing  
Detection  
V
link VDD  
RIFB = ----------------------------- = -------------------------------  
Iref 129mA  
460V VDD  
[Eq.4]  
ZCD  
By using digital loop compensation, the voltage feedback  
signal does not require an external compensation network.  
A current proportional to the AC input voltage is supplied to the  
IC on pin IAC and is used by the PFC control algorithm.  
GD ‘ON’  
ZCD_below_zero  
Vrect  
Figure 21. Zero-voltage Switch  
R1  
IAC  
RIAC  
During each switching cycle, when the boost diode current  
reaches zero, the boost MOSFET drain-source voltage begins  
oscillating at the resonant frequency of the boost inductor and  
MOSFET parasitic output capacitance. The ZCD_below_zero  
signal transitions from high to low just prior to a local minimum  
of the MOSFET drain-source voltage oscillation. The zero-  
crossing detect circuit ensures that a ZCD_below_zero pulse  
will only be generated when the comparator output is  
continuously high for a nominal time period (tZCB) of 200ns.  
Therefore, any negative edges on the comparator's output  
due to spurious glitches will not cause a pulse to be  
generated.  
V DD  
8
R2  
CS1601  
15k  
24k  
IA C  
3
ADC  
Figure 19. IAC Input Pin Model  
Resistor RIAC sets the IAC current and is derived as follows:  
RIAC = RIFB  
[Eq.5]  
Due to the CS1601's variable-frequency control, the MOSFET  
switching cycle will not always be initiated at the first resonant  
DS931PP6  
11