欢迎访问ic37.com |
会员登录 免费注册
发布采购

CS5302GDW28 参数 Datasheet PDF下载

CS5302GDW28图片预览
型号: CS5302GDW28
PDF下载: 下载PDF文件 查看货源
内容描述: [Switching Controller, PDSO28, SO-28]
分类和应用: 开关光电二极管
文件页数/大小: 20 页 / 139 K
品牌: CHERRY [ CHERRY SEMICONDUCTOR CORPORATION ]
 浏览型号CS5302GDW28的Datasheet PDF文件第11页浏览型号CS5302GDW28的Datasheet PDF文件第12页浏览型号CS5302GDW28的Datasheet PDF文件第13页浏览型号CS5302GDW28的Datasheet PDF文件第14页浏览型号CS5302GDW28的Datasheet PDF文件第16页浏览型号CS5302GDW28的Datasheet PDF文件第17页浏览型号CS5302GDW28的Datasheet PDF文件第18页浏览型号CS5302GDW28的Datasheet PDF文件第19页  
CS5302  
4.00  
3.50  
3.00  
2.50  
2.00  
1.50  
If the RC is too fast, during step loads the current  
waveform will appear larger than it is (typically for a  
few hundred µs) and may trip the current limit at a  
level lower than the DC limit.  
Adaptive Positioning  
7. To set the amount of voltage positioning below the  
DAC setting at no load connect a resistor (R  
)
V(FB)  
1.00  
0.50  
between the output voltage and the V pin. Choose  
FB  
R
V(FB)  
as;  
0.00  
0
15  
10  
5
R
+ NL PositionńV  
Bias Current  
FB  
V(FB)  
1/ Apparent Duty Cycle  
See Figure 2 for V Bias Current.  
8. To set the difference in output voltage between no  
load and full load, connect a resistor (R  
Figure 13. Normalized Input Filter Capacitor  
Ripple Current  
FB  
)
V(DRP)  
between the V  
and V pins. R  
can be  
DESIGN EXAMPLE  
DRP  
FB  
V(DRP)  
calculated in two steps. First calculate the difference  
between the V and V pin at full load. (The V  
Choose the component values for a 5.0 V to 1.6 V, 35 A  
converter with lossless current sensing, adaptive positioning  
and a 45 A current limit. The adaptive positioning is chosen  
DRP  
FB  
FB  
voltage should be the same as the DAC voltage during  
closed loop operation.) Then choose the R to  
V(DRP)  
30 mV above the nominal V  
at no load and 40 mV  
OUT  
source enough current across R ( ) for the desired  
V FB  
below the no–load position with 35 A out. The peak output  
voltage transient is 70 mV max during a 32 A step current.  
change in output voltage.  
DV  
+ I  
OUTFL  
  R   CS to V  
Gain  
DRP  
V(DRP)  
Current Sensing, Power Stage and  
Output Filter Components  
where:  
R = R or R for one phase;  
L
OUTFL  
R
S
1. Assume 1.5 mof output filter ESR.  
I
is the full load output current.  
2.  
V
ńV  
OUT IN  
+ (V * V  
)   
OUT  
R
IN  
+ DV  
  R  
ńDV  
V(FB)  
F   C   25 mV  
1.6ń5.0  
250 k   0.01 mF   25 mV  
V(DRP)  
OUT  
V(DRP)  
+ (5.0 * 1.6)   
+ 17.4 kW  
Calculate Input Filter Capacitor Current Ripple  
The procedure below assumes that phases do not overlap  
and output inductor ripple current (P–P) is less than the  
average output current of one phase.  
LńR + .01 mF   17.47 kW + 174 ms  
L
Choose R + 2.0 mW  
L
9. Calculate Input Current  
L + 2.0 mW   174 ms + 348 nH  
V
  I  
OUT  
OUT  
Efficiency   V  
3. n/a  
I
IN  
+
(
)
IN  
4.  
PwrstgZ  
+ R   CSA Gainń2.0  
L
10. Calculate Duty Cycle (per phase).  
+ 2.0 mW   3.15ń2.0 + 3.1 mW  
V
OUT  
Efficiency   V  
PwrstgZ   ESR  
Duty Cycle +  
+
+
ConverterZ  
(
)
IN  
PwrstgZ ) ESR  
3.1 mW   1.5 mW  
3.1 mW ) 1.5 mW  
11. Calculate Apparent Duty Cycle.  
^ 1.0 mW  
Apparent Duty Cycle + Duty Cycle   # of Phases  
DVR + 1.0 mW   32 A + 32 mV  
12. Calculate Input Filter Capacitor Ripple Current. Use  
the chart in Figure NO TAG to calculate the  
5. n/a  
normalized ripple current (K  
) based on the  
RMS  
Current Limit  
reciprocal of Apparent Duty Cycle. Then multiply the  
input current by K to obtain the Input Filter  
Capacitor Ripple Current.  
V
6.  
+ R   I  
L
I(LIM)  
OUT(LIM)  
  CS to I Gain  
RMS  
LIM  
+ 2.0 mW   45 A   6.25  
+ 562 mV  
Ripple (RMS) + I   K  
IN  
RMS  
http://onsemi.com  
15