欢迎访问ic37.com |
会员登录 免费注册
发布采购

CS51311GD14 参数 Datasheet PDF下载

CS51311GD14图片预览
型号: CS51311GD14
PDF下载: 下载PDF文件 查看货源
内容描述: CPU同步降压控制器的12V和5V的应用 [Synchronous CPU Buck Controller for 12V and 5V Applications]
分类和应用: 开关光电二极管控制器
文件页数/大小: 19 页 / 239 K
品牌: CHERRY [ CHERRY SEMICONDUCTOR CORPORATION ]
 浏览型号CS51311GD14的Datasheet PDF文件第8页浏览型号CS51311GD14的Datasheet PDF文件第9页浏览型号CS51311GD14的Datasheet PDF文件第10页浏览型号CS51311GD14的Datasheet PDF文件第11页浏览型号CS51311GD14的Datasheet PDF文件第13页浏览型号CS51311GD14的Datasheet PDF文件第14页浏览型号CS51311GD14的Datasheet PDF文件第15页浏览型号CS51311GD14的Datasheet PDF文件第16页  
Application Information: continued  
their high saturation flux density and have low loss at high where IL(VALLEY) = inductor valley current.  
frequencies, a distributed gap and exhibit very low EMI.  
The inductor value can be determined by:  
Given the requirements of an application such as a buck  
converter, it is found that a toroid powdered iron core is  
quite suitable due to its low cost, low core losses at the  
switching frequency, and low EMI.  
(VIN VOUT) × tTR  
L =  
,
∆Ι  
Step 5: Selection of the Input Capacitors  
where  
VIN = input voltage;  
These components must be selected and placed carefully to  
yield optimal results. Capacitors should be chosen to pro-  
vide acceptable ripple on the input supply lines. A key  
specification for input capacitors is their ripple current rat-  
ing. The input capacitor should also be able to handle the  
VOUT = output voltage;  
t
TR = output voltage transient response time (assigned  
by the designer);  
I = load transient.  
The inductor ripple current can then be determined:  
input RMS current IIN(RMS)  
.
The combination of the input capacitors CIN discharges  
during the on-time.  
The input capacitor discharge current is given by:  
V
OUT × TOFF  
IL =  
,
L
where  
IL = inductor ripple current;  
VOUT = output voltage;  
TOFF = switch Off-Time;  
L = inductor value.  
The designer can now verify if the number of output  
capacitors from step 2 will provide an acceptable output  
voltage ripple (1% of output voltage is common). The for-  
mula below is used:  
ICINDIS(RMS)  
=
(IL(PEAK)2 + (IL(PEAK) × IL(VALLEY)) + IL(VALLEY)2 × D  
,
3
where  
ICINDIS(RMS) = input capacitor discharge current;  
IL(PEAK) = inductor peak current;  
IL(VALLEY) = inductor valley current.  
CIN charges during the off-time, the average current  
through the capacitor over one switching cycle is zero:  
VOUT  
IL =  
,
ESRMAX  
Rearranging we have:  
ESRMAX  
D
ICIN(CH) = ICIN(DIS)  
×
,
VOUT  
IL  
1 D  
=
,
where  
ICIN(CH) = input capacitor charge current;  
ICIN(DIS) = input capacitor discharge current;  
D = Duty Cycle.  
where  
ESRMAX = maximum allowable ESR;  
VOUT = 1% × VOUT = maximum allowable output volt-  
age ripple ( budgeted by the designer );  
IL = inductor ripple current;  
VOUT = output voltage.  
The number of output capacitors is determined by:  
The total Input RMS current is:  
ICIN(RMS)  
=
(ICIN(DIS)2 × D) + (ICIN(CH)2 × (1 D))  
The number of input capacitors required is then deter-  
mined by:  
ESRCAP  
ESRMAX  
Number of capacitors =  
,
ICIN(RMS)  
IRIPPLE  
NCIN  
=
,
where ESRCAP = maximum ESR per capacitor (specified in  
manufacturer’s data sheet).  
The designer must also verify that the inductor value  
yields reasonable inductor peak and valley currents (the  
inductor current is a triangular waveform):  
where  
NCIN = number of input capacitors;  
CIN(RMS) = total input RMS current;  
I
IRIPPLE = input capacitor ripple current rating (specified  
in manufacturer’s data sheets).  
IL  
The total input capacitor ESR needs to be determined in  
order to calculate the power dissipation of the input capac-  
itors:  
IL(PEAK) = IOUT  
+
,
2
where  
IL(PEAK) = inductor peak current;  
ESRCAP  
NCIN  
ESRCIN  
=
,
I
OUT = load current;  
IL = inductor ripple current.  
where  
ESRCIN = total input capacitor ESR;  
ESRCAP = maximum ESR per capacitor (specified in  
manufacturer’s data sheets);  
NCIN = number of input capacitors.  
IL  
IL(VALLEY) = IOUT  
,
2
12  
 复制成功!