欢迎访问ic37.com |
会员登录 免费注册
发布采购

AAT3215IGV-2.85-T1 参数 Datasheet PDF下载

AAT3215IGV-2.85-T1图片预览
型号: AAT3215IGV-2.85-T1
PDF下载: 下载PDF文件 查看货源
内容描述: 150毫安CMOS高性能LDO [150mA CMOS High Performance LDO]
分类和应用:
文件页数/大小: 18 页 / 343 K
品牌: ANALOGICTECH [ ADVANCED ANALOGIC TECHNOLOGIES ]
 浏览型号AAT3215IGV-2.85-T1的Datasheet PDF文件第8页浏览型号AAT3215IGV-2.85-T1的Datasheet PDF文件第9页浏览型号AAT3215IGV-2.85-T1的Datasheet PDF文件第10页浏览型号AAT3215IGV-2.85-T1的Datasheet PDF文件第11页浏览型号AAT3215IGV-2.85-T1的Datasheet PDF文件第13页浏览型号AAT3215IGV-2.85-T1的Datasheet PDF文件第14页浏览型号AAT3215IGV-2.85-T1的Datasheet PDF文件第15页浏览型号AAT3215IGV-2.85-T1的Datasheet PDF文件第16页  
AAT3215  
150mA CMOS High Performance LDO  
Thus, the AAT3215 can sustain a constant 2.5V out-  
put at a 150mA load current as long as VIN is 6.00V  
at an ambient temperature of 25°C. 6.0V is the  
absolute maximum voltage where an AAT3215  
would never be operated, thus at 25°C, the device  
would not have any thermal concerns or operational  
VIN(MAX) limits.  
For a 150mA output current and a 2.7V drop  
across the AAT3215 at an ambient temperature of  
85°C, the maximum on-time duty cycle for the  
device would be 85.54%.  
The following family of curves show the safe oper-  
ating area for duty-cycled operation from ambient  
room temperature to the maximum operating level.  
This situation can be different at 85°C. The follow-  
ing is an example for an AAT3215 set for a 2.5V  
output at 85°C:  
Device Duty Cycle vs. VDROP  
(VOUT = 2.5V @ 25°C)  
3.5  
3
VOUT = 2.5V  
IOUT  
IGND  
= 150mA  
= 150µA  
2.5  
200mA  
2
1.5  
1
211mW + (2.5V  
=
· 150mA)  
150mA + 150μA  
VIN(MAX)  
0.5  
0
VIN(MAX) = 3.90V  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
From the discussion above, PD(MAX) was deter-  
mined to equal 211mW at TA = 85°C.  
Duty Cycle (%)  
Higher input-to-output voltage differentials can be  
obtained with the AAT3215, while maintaining device  
functions within the thermal safe operating area. To  
accomplish this, the device thermal resistance must  
be reduced by increasing the heat sink area or by  
operating the LDO regulator in a duty-cycled mode.  
Device Duty Cycle vs. VDROP  
(VOUT = 2.5V @ 50°C)  
3.5  
3
For example, an application requires VIN = 4.2V  
while VOUT = 2.5V at a 150mA load and TA = 85°C.  
VIN is greater than 3.90V, which is the maximum  
safe continuous input level for VOUT = 2.5V at  
150mA for TA = 85°C. To maintain this high input  
voltage and output current level, the LDO regulator  
must be operated in a duty-cycled mode. Refer to  
the following calculation for duty-cycle operation:  
2.5  
2
200mA  
1.5  
1
150mA  
0.5  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Duty Cycle (%)  
IGND = 150µA  
IOUT = 150mA  
VIN = 4.2V  
Device Duty Cycle vs. VDROP  
(VOUT = 2.5V @ 85°C)  
VOUT = 2.5V  
3.5  
3
100mA  
PD(MAX)  
(VIN - VOUT)IOUT + (VIN · IGND)  
%DC = 100  
2.5  
2
200mA  
150mA  
211mW  
(4.2V - 2.5V)150mA + (4.2V  
1.5  
1
%DC = 100  
·
150μA)  
0.5  
0
%DC = 85.54%  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
PD(MAX) was assumed to be 211mW.  
Duty Cycle (%)  
12  
3215.2006.05.1.6