2–12
Chapter 2: MAX V Architecture
Logic Elements
The speed advantage of the carry-select chain is in the parallel pre-computation of
carry chains. Because the LAB carry-in selects the precomputed carry chain, not every
LE is in the critical path. Only the propagation delays between LAB carry-in
generation (LE5and LE10) are now part of the critical path. This feature allows the
MAX V architecture to implement high-speed counters, adders, multipliers, parity
functions, and comparators of arbitrary width.
Figure 2–9 shows the carry-select circuitry in an LAB for a 10-bit full adder. One
portion of the LUT generates the sum of two bits using the input signals and the
appropriate carry-in bit; the sum is routed to the output of the LE. The register can be
bypassed for simple adders or used for accumulator functions. Another portion of the
LUT generates carry-out bits. An LAB-wide carry-in bit selects which chain is used for
the addition of given inputs. The carry-in signal for each chain, carry-in0or
carry-in1, selects the carry-out to carry forward to the carry-in signal of the
next-higher-order bit. The final carry-out signal is routed to an LE, where it is fed to
local, row, or column interconnects.
Figure 2–9. Carry-Select Chain
LAB Carry-In
0
1
LAB Carry-In
Carry-In0
Sum1
Sum2
Sum3
Sum4
Sum5
A1
B1
LE0
LE1
LE2
LE3
LE4
Carry-In1
A2
B2
LUT
LUT
data1
data2
Sum
A3
B3
A4
B4
LUT
LUT
A5
B5
0
1
Carry-Out0
Carry-Out1
Sum6
Sum7
Sum8
Sum9
Sum10
A6
B6
LE5
LE6
LE7
LE8
LE9
A7
B7
A8
B8
A9
B9
A10
B10
To top of adjacent LAB
LAB Carry-Out
MAX V Device Handbook
December 2010 Altera Corporation