欢迎访问ic37.com |
会员登录 免费注册
发布采购

AD9223AR 参数 Datasheet PDF下载

AD9223AR图片预览
型号: AD9223AR
PDF下载: 下载PDF文件 查看货源
内容描述: 完整的12位1.5 / 3.0 / 10.0 MSPS单片A / D转换器 [Complete 12-Bit 1.5/3.0/10.0 MSPS Monolithic A/D Converters]
分类和应用: 转换器
文件页数/大小: 28 页 / 353 K
品牌: ADI [ ADI ]
 浏览型号AD9223AR的Datasheet PDF文件第16页浏览型号AD9223AR的Datasheet PDF文件第17页浏览型号AD9223AR的Datasheet PDF文件第18页浏览型号AD9223AR的Datasheet PDF文件第19页浏览型号AD9223AR的Datasheet PDF文件第21页浏览型号AD9223AR的Datasheet PDF文件第22页浏览型号AD9223AR的Datasheet PDF文件第23页浏览型号AD9223AR的Datasheet PDF文件第24页  
AD9221/AD9223/AD9220  
Table V. Out-of-Range Truth Table  
3.75V  
VINA  
AD9221/  
AD9223/  
AD9220  
1.25V  
OTR  
MSB  
Analog Input Is  
820⍀  
+5V  
1k⍀  
0
0
1
1
0
1
0
1
In Range  
In Range  
Underrange  
Overrange  
0.1F  
1k⍀  
VINB  
10F  
0.1F  
2N2222  
1k⍀  
316⍀  
10F  
1/2  
OP282  
7.5k⍀  
MSB  
OTR  
MSB  
1.225V  
OVER = “1”  
+5V  
VREF  
0.1F  
AD1580  
+5V  
SENSE  
UNDER = “1”  
Figure 52. External Reference Using the AD1580 and Low  
Impedance Buffer  
Figure 54. Overrange or Underrange Logic  
DIGITAL INPUTS AND OUTPUTS  
Digital Output Driver Considerations (DVDD)  
Digital Outputs  
The AD9221, AD9223 and AD9220ARS output drivers can be  
configured to interface with +5 V or 3.3 V logic families by setting  
DVDD to +5 V or 3.3 V respectively. However, the AD9220AR  
can only be configured to interface with +5 V logic families. The  
AD9221/AD9223/AD9220 output drivers are sized to provide  
sufficient output current to drive a wide variety of logic families.  
However, large drive currents tend to cause glitches on the  
supplies and may affect SINAD performance. Applications  
requiring the AD9221/AD9223/AD9220 to drive large capaci-  
tive loads or large fanout may require additional decoupling  
capacitors on DVDD. In extreme cases, external buffers or  
latches may be required.  
The AD9221/AD9223/AD9220 output data is presented in  
positive true straight binary for all input ranges. Table IV indi-  
cates the output data formats for various input ranges regardless  
of the selected input range. A twos complement output data  
format can be created by inverting the MSB.  
Table IV. Output Data Format  
I
nput (V)  
Condition (V)  
Digital Output  
OTR  
VINA –VINB < – VREF  
VINA –VINB = – VREF  
VINA –VINB = 0  
VINA –VINB = + VREF – 1 LSB 1111 1111 1111  
VINA –VINB + VREF  
0000 0000 0000  
0000 0000 0000  
1000 0000 0000  
1
0
0
0
1
Clock Input and Considerations  
The AD9221/AD9223/AD9220 internal timing uses the two  
edges of the clock input to generate a variety of internal timing  
signals. The clock input must meet or exceed the minimum  
specified pulsewidth high and low (tCH and tCL) specifications  
for the given A/D as defined in the Switching Specifications at  
the beginning of the data sheet to meet the rated performance  
specifications. For example, the clock input to the AD9220  
operating at 10 MSPS may have a duty cycle between 45% to  
55% to meet this timing requirement since the minimum specified  
tCH and tCL is 45 ns. For clock rates below 10 MSPS, the duty  
cycle may deviate from this range to the extent that both tCH  
and tCL are satisfied.  
1111 1111 1111  
+FS –1 1/2 LSB  
OTR DATA OUTPUTS  
1111 1111 1111  
1111 1111 1111  
1111 1111 1110  
OTR  
1
0
0
–FS+1/2 LSB  
0000 0000 0001  
0000 0000 0000  
0000 0000 0000  
0
0
1
–FS  
–FS –1/2 LSB  
+FS  
+FS –1/2 LSB  
All high speed high resolution A/Ds are sensitive to the quality  
of the clock input. The degradation in SNR at a given full-scale  
input frequency (fIN) due to only aperture jitter (tA) can be  
calculated with the following equation:  
Figure 53. Output Data Format  
Out Of Range (OTR)  
An out-of-range condition exists when the analog input voltage  
is beyond the input range of the converter. OTR is a digital  
output that is updated along with the data output corresponding  
to the particular sampled analog input voltage. Hence, OTR has  
the same pipeline delay (latency) as the digital data. It is LOW  
when the analog input voltage is within the analog input range.  
It is HIGH when the analog input voltage exceeds the input  
range as shown in Figure 53. OTR will remain HIGH until the  
analog input returns within the input range and another conver-  
sion is completed. By logical ANDing OTR with the MSB  
and its complement, overrange high or underrange low condi-  
tions can be detected. Table V is a truth table for the over/  
underrange circuit in Figure 54 which uses NAND gates. Sys-  
tems requiring programmable gain conditioning of the AD9221/  
AD9223/AD9220 input signal can immediately detect an out-  
of-range condition, thus eliminating gain selection iterations.  
Also, OTR can be used for digital offset and gain calibration.  
SNR = 20 log10 [1/2 π fIN tA]  
In the equation, the rms aperture jitter, tA, represents the root-  
sum square of all the jitter sources which include the clock in-  
put, analog input signal, and A/D aperture jitter specification.  
For example, if a 5 MHz full-scale sine wave is sampled by an  
A/D with a total rms jitter of 15 ps, the SNR performance of the  
A/D will be limited to 66.5 dB. Undersampling applications are  
particularly sensitive to jitter.  
The clock input should be treated as an analog signal in cases  
where aperture jitter may affect the dynamic range of the  
AD9221/AD9223/AD9220. As such, supplies for clock drivers  
should be separated from the A/D output driver supplies to  
avoid modulating the clock signal with digital noise. Low jitter  
crystal controlled oscillators make the best clock sources. If the  
–20–  
REV. D  
 复制成功!