欢迎访问ic37.com |
会员登录 免费注册
发布采购

X1243S8 参数 Datasheet PDF下载

X1243S8图片预览
型号: X1243S8
PDF下载: 下载PDF文件 查看货源
内容描述: 实时时钟/日历/闹钟,带有EEPROM [Real Time Clock/Calendar/Alarm with EEPROM]
分类和应用: 闹钟可编程只读存储器电动程控只读存储器电可擦编程只读存储器时钟
文件页数/大小: 18 页 / 94 K
品牌: XICOR [ XICOR INC. ]
 浏览型号X1243S8的Datasheet PDF文件第2页浏览型号X1243S8的Datasheet PDF文件第3页浏览型号X1243S8的Datasheet PDF文件第4页浏览型号X1243S8的Datasheet PDF文件第5页浏览型号X1243S8的Datasheet PDF文件第7页浏览型号X1243S8的Datasheet PDF文件第8页浏览型号X1243S8的Datasheet PDF文件第9页浏览型号X1243S8的Datasheet PDF文件第10页  
X1243
CONTROL REGISTERS
Block Protect Bits - BP2, BP1, BP0 - (Nonvolatile)
The Block Protect Bits, BP2, BP1 and BP0, determine
which blocks of the array are write protected. A write
to a protected block of memory is ignored. The block
protect bits will prevent write operations to one of eight
segments of the array. The partitions are described in
Table 3.
Table 3. Block Protect Bits
BP2
BP1
BP0
Protected Addresses
X1243
None
600h - 7FFh
400h - 7FFh
000h - 7FFh
000h - 03Fh
000h - 07Fh
000h - 0FFh
000h - 1FFh
A match of the RTC and the contents of the alarm 1
registers automatically sets the AL1 bit. If the AL1E bit
is also set, the output IRQ signal goes active (LOW). If
the AL1E bit is not set, the AL1 bit is set, but the IRQ
signal remains unchanged.
Reading the status register, containing the AL0 and
AL1 bits, resets the bits. The bits do not reset until the
falling edge of the 8th output clock of the status regis-
ter containing the Alarm bits. When the bits reset, the
output IRQ signal returns to the inactive state.
Pulsed Interrupt Mode (IM bit =1)
In this mode, the alarm interrupt enable bits (AL0E and
AL1E) are not used. Alarm 1 operates as before, so a
match of the RTC and Alarm 1 sets the AL1 bit. Since
the interrupt enable bits have no function, it is neces-
sary for the host processor to poll the AL1 bit to deter-
mine if an alarm has occurred.
Alarm 0 provides an output response. In this case,
when the RTC matches the Alarm 0 registers, the out-
put IRQ pulses one time. This pulse can be used to
control some outside circuit or event, without the need
for a local processor. The duration of the pulse is 1024
cycles of the 32.748kHz oscillator. All alarm 0 enable
options are available, so this becomes a very flexible
long term repeat trigger.
WRITING TO THE CLOCK/CONTROL REGISTERS
Changing any of the nonvolatile bits of the clock/con-
trol register requires the following steps:
—Write a 02H to the Status Register to set the Write
Enable Latch (WEL). This is a volatile operation, so
there is no delay after the write. (Operation pre-
ceeded by a start and ended with a stop).
—Write a 06H to the Status Register to set both the
Register Write Enable Latch (RWEL) and the WEL
bit. This is also a volatile cycle. The zeros in the data
byte are required. (Operation preceeded by a start
and ended with a stop).
—Write one to 8 bytes to the Clock/Control Registers
with the desired clock, alarm, or control data. This
sequence starts with a start bit, requires a slave byte
of “11011110” and an address within the CCR and is
terminated by a stop bit. A write to the CCR changes
EEPROM values so these initiate a nonvolatile write
cycle and will take up to 10ms to complete. Writes to
undefined areas have no effect. The RWEL bit is
reset by the completion of a nonvolatile write write
cycle, so the sequence must be repeated to again
6
Array Lock
None
Upper 1/4
Upper 1/2
Full Array
First Page
First 2 pgs
First 4 pgs
First 8 Pgs
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Interrupt Control Bits (AL1E, AL0E)
There are two Interrupt Control bits, Alarm 1 Interrupt
Enable (AL1E) and Alarm 0 Interrupt Enable (AL0E) to
specifically enable or disable the alarm interrupt signal
output. The interrupt output is enabled when either bit is
set to ‘1’. Two volatile bits (AL1 and AL0), associated
with these alarms, indicate if an alarm has happened.
These bits are set on an alarm condition regardless of
whether the alarm interrupts are enabled. The AL1
and AL0 bits are reset by the falling edge of the 8th
clock of a read of the register containing the bits.
In an alternative mode (called pulsed interrupt mode),
controlled by an interrupt mode (IM) bit, the alarm 0
setting provides an output pulse on IRQ each time the
alarm matches the RTC. In this case the AL0 bit is not
used. Alarm 1 works as before (i.e. the AL1 bit is set
when an alarm occurs), but it is necessary to poll the sta-
tus register to determine whether a match has occurred.
This read operation is necessary to reset the AL1 flag.
Normal Mode (IM bit =0)
A match of the RTC and the contents of the alarm 0
registers automatically sets the AL0 bit. If the AL0E bit
is also set, the output IRQ signal goes active (LOW). If
the AL0E bit is not set, the AL0 bit is set, but the IRQ
signal remains unchanged.