欢迎访问ic37.com |
会员登录 免费注册
发布采购

US3004CW 参数 Datasheet PDF下载

US3004CW图片预览
型号: US3004CW
PDF下载: 下载PDF文件 查看货源
内容描述: 提供双LDO控制器的5位可编程同步降压控制器IC [5 BIT PROGRAMMABLE SYNCHRONOUS BUCK CONTROLLER IC WITH DUAL LDO CONTROLLER]
分类和应用: 控制器
文件页数/大小: 14 页 / 101 K
品牌: UNISEM [ UNISEM ]
 浏览型号US3004CW的Datasheet PDF文件第6页浏览型号US3004CW的Datasheet PDF文件第7页浏览型号US3004CW的Datasheet PDF文件第8页浏览型号US3004CW的Datasheet PDF文件第9页浏览型号US3004CW的Datasheet PDF文件第10页浏览型号US3004CW的Datasheet PDF文件第12页浏览型号US3004CW的Datasheet PDF文件第13页浏览型号US3004CW的Datasheet PDF文件第14页  
US3004/US3005  
drooping during a load current step. However if the in-  
ductor is too small , the output ripple current and ripple  
voltage become too large. One solution to bring the ripple  
current down is to increase the switching frequency ,  
however that will be at the cost of reduced efficiency and  
higher system cost. The following set of formulas are  
derived to achieve the optimum performance without  
many design iterations.  
Power Component Selection  
Assuming IRL3103 MOSFETs as power components,  
we will calculate the maximum power dissipation as fol-  
lows:  
For high side switch the maximum power dissipation  
happens at maximum Vo and maximum duty cycle.  
Dmax » ( 2.8 + 0.27 ) / ( 4.75 - 0.27 + 0.27 ) = 0.65  
Pdh = Dmax * Io^2*Rds(max)  
The maximum output inductance is calculated using the  
following equation :  
Pdh= 0.65*14.2^2*0.029=3.8 W  
L=ESR*C*(Vinmin-Vomax )/(2*DI )  
Where :  
Vinmin = Minimum input voltage  
Rds(max)=Maximum Rds-on of the MOSFET at 125°C  
For synch MOSFET, maximum power dissipation hap-  
pens at minimum Vo and minimum duty cycle.  
Dmin » ( 2 + 0.27 ) / ( 5.25 - 0.27 + 0.27 ) = 0.43  
Pds = (1-Dmin)*Io^2*Rds(max)  
For Vo = 2.8 V , DI = 14.2 A  
L =0.006 * 9000 * ( 4.75 - 2.8) / (2 * 14.2) = 3.7 uH  
Assuming that the programmed switching frequency is  
set at 200 KHZ , an inductor is designed using the  
Micrometals’ powder iron core material. The summary  
of the design is outlined below :  
Pds=(1 - 0.43) * 14.2^2 * 0.029 = 3.33 W  
Heatsink Selection  
The selected core material is Powder Iron , the  
selected core is T50-52D from Micro Metal wounded  
with 8 Turns of # 16 AWG wire, resulting in 3 uH  
inductance with » 3 mW of DC resistance.  
Assuming L = 3 uH and the switching frequency ; Fsw =  
200 KHZ , the inductor ripple current and the output  
ripple voltage is calculated using the following set of  
equations :  
Selection of the heat sink is based on the maximum  
allowable junction temperature of the MOSFETS. Since  
we previously selected the maximum Rds-on at 125°C,  
then we must keep the junction below this temperature.  
Selecting TO220 package gives qjc=1.8°C/W ( From the  
venders’ datasheet ) and assuming that the selected  
heatsink is Black Anodized , the Heat sink to Case ther-  
mal resistance is ; qcs=0.05°C/W , the maximum heat  
sink temperature is then calculated as :  
T = 1/Fsw  
T º Switching Period  
Ts = Tj - Pd * (qjc + qcs)  
D » ( Vo + Vsync ) / ( Vin - Vsw + Vsync )  
D º Duty Cycle  
Ton = D * T  
Vsw º High side Mosfet ON Voltage = Io * Rds  
Rds º Mosfet On Resistance  
Ts = 125 - 3.82 * (1.8 + 0.05) = 118 °C  
With the maximum heat sink temperature calculated in  
the previous step, the Heat Sink to Air thermal resis-  
tance (qsa) is calculated as follows :  
Assuming Ta=35 °C  
Toff = T - Ton  
Vsync º Synchronous MOSFET ON Voltage=Io * Rds  
DIr = ( Vo + Vsync ) * Toff /L  
DT = Ts - Ta = 118 - 35 = 83 °C Temperature Rise  
Above Ambient  
qsa = DT/Pd  
DIr º Inductor Ripple Current  
qsa = 83 / 3.82 = 22 °C/W  
DVo = DIr * ESR  
DVo º Output Ripple Voltage  
In our example for Vo = 2.8V and 14.2 A load , Assum-  
ing IRL3103 MOSFET for both switches with maximum  
on resistance of 19 mW, we have :  
T = 1 / 200000 = 5 uSec  
Vsw =Vsync= 14.2*0.019=0.27 V  
D » ( 2.8 + 0.27 ) / ( 5 - 0.27 + 0.27 ) = 0.61  
Ton = 0.61 * 5 = 3.1 uSec  
Next , a heat sink with lower qsa than the one calcu-  
lated in the previous step must be selected. One way to  
do this is to simply look at the graphs of the “Heat Sink  
Temp Rise Above the Ambient” vs. the “Power Dissipa-  
tion” given in the heatsink manufacturers’ catalog and  
select a heat sink that results in lower temperature rise  
than the one calculated in previous step. The following  
heat sinks from AAVID and Thermaloy meet this crite-  
ria.  
Toff = 5 - 3.1 = 1.9 uSec  
DIr = ( 2.8 + 0.27 ) * 1.9 / 3 = 1.94 A  
DVo = 1.94 * .006 = .011 V = 11 mV  
Co.  
Thermalloy  
AAVID  
Part #  
6078B  
577002  
Rev. 1.2  
12/8/00  
4-11