欢迎访问ic37.com |
会员登录 免费注册
发布采购

TPS23750PWPR 参数 Datasheet PDF下载

TPS23750PWPR图片预览
型号: TPS23750PWPR
PDF下载: 下载PDF文件 查看货源
内容描述: 结合100 -V型IEEE 802.3af PD和DC / DC控制器 [INTEGRATED 100-V IEEE 802.3af PD AND DC/DC CONTROLLER]
分类和应用: 稳压器开关式稳压器或控制器电源电路开关式控制器光电二极管PC
文件页数/大小: 38 页 / 2852 K
品牌: TI [ TEXAS INSTRUMENTS ]
 浏览型号TPS23750PWPR的Datasheet PDF文件第23页浏览型号TPS23750PWPR的Datasheet PDF文件第24页浏览型号TPS23750PWPR的Datasheet PDF文件第25页浏览型号TPS23750PWPR的Datasheet PDF文件第26页浏览型号TPS23750PWPR的Datasheet PDF文件第28页浏览型号TPS23750PWPR的Datasheet PDF文件第29页浏览型号TPS23750PWPR的Datasheet PDF文件第30页浏览型号TPS23750PWPR的Datasheet PDF文件第31页  
TPS23750  
TPS23770  
www.ti.com  
SLVS590AJULY 2005REVISED AUGUST 2005  
Four major contributors to internal heat dissipation are the internal (hotswap) MOSFET I2R, the gate drive load,  
the internal bias power, and the optocoupler load. These four contributors form a template for the loss  
approximations of the common configurations shown in Table 3 . The total loss under low, medium, and high  
input voltages should be checked. I2R dominant designs fare worse at low input voltage, while an AUX-load loss  
driven design may be worse at high input voltage.  
Table 3. Power Dissipation  
INTERNAL DISSIPATION MODEL  
2
PIN  
VDD  
Isolated converter with  
AUX override  
) ƪV  
) ƪV  
) ƪV  
) ƪV  
ƫ
ƪ
ƫ ) ƪǒ  
Ǔ
ƫ
ǒ Ǔ  
P +  
P +  
P +  
P +  
  R  
  Q   ƒ ) VAUX   IINTERNAL  
VAUX * VBIAS   IOPTO  
ƪ ƫ  
AUX  
DSON  
G
2
PIN  
VDD  
Isolated converter with-  
out AUX override  
ƫ
ƪ
ƫ ) ƪǒ  
Ǔ
ƫ
ǒ Ǔ  
  R  
  Q   ƒ ) VDD   IINTERNAL  
VDD * VBIAS   IOPTO  
ƪ ƫ  
DD  
DSON  
G
2
PIN  
Nonisolated converter  
with AUX override  
ƫ ƪ  
  Q   ƒ ) VAUX   IINTERNAL  
G
ƫ
ǒ Ǔ  
  R  
ƪ ƫ  
AUX  
DSON  
VDD  
2
PIN  
Nonisolated converter  
without AUX override  
ƫ
ƪ
ƫ
ǒ Ǔ  
  R  
  Q   ƒ ) VDD   IINTERNAL  
ƪ ƫ  
DD  
DSON  
G
VDD  
IINTERNAL represents the operational current from the Electrical Characteristics table. Approximate that all the  
current is due to the controller.  
PIN is the converter input power (POUT/efficiency), not the power at the PI.  
f is the converter switching frequency, and IOPTO is the optocoupler bias current.  
VDD can be calculated as  
Ǹ
ǒVPSE  
DǓ) ǒVPSE  
DǓ2  
* 4   P   R  
IN  
* 2   V  
* 2V  
LOOP  
V
+
DD  
2
where VD is an input diode drop (0.75 V), RLOOP is  
0 to 20 plus the MOSFET resistance, and PIN as above. VPSE is 44 V for cases where the MOSFET loss  
dominates.  
RDSON is the internal pass MOSFET resistor, 0.6 typical and 1 maximum.  
The loss should be checked at different PI voltages to determine the worst case, especially where AUX  
override is not used.  
A simple thermal model for the junction temperature is:  
TJ = TA + (P ×θJA)  
where TJ is the junction temperature, TA is the ambient temperature, P is the total power dissipated in the  
TPS23750, and θJA is the thermal resistance from the junction to ambient. θJA includes heat paths from the die  
through the package directly to air, through the leads to the circuit board, from the PowerPAD to the circuit  
board, and from the circuit board to air. The long-term steady-state junction temperature should be kept below  
125°C.  
Consider the case of a buck converter to demonstrate a thermal design:  
The output is 5 V at 1.5 A, with estimated efficiency of 85%.  
The chosen switching MOSFET has a QG of 10 nC, and a switching frequency of 200 kHz.  
Use the worst-case internal MOSFET resistance of 1 .  
Assume an ambient air temperature of 65°C.  
Assume a thermal resistance of 45°C/W, because the PowerPAD has been connected to a large copper fill,  
but is not exactly as shown in SLMA002.  
Use the worst-case combinations of input voltage and loop resistance per Table 4.  
27  
 
 复制成功!