TMS320F28335, TMS320F28334, TMS320F28332
TMS320F28235, TMS320F28234, TMS320F28232
www.ti.com
SPRS439I–JUNE 2007–REVISED MARCH 2011
3.2.4 Real-Time JTAG and Analysis
The 2833x/2823x devices implement the standard IEEE 1149.1 JTAG interface. Additionally, the devices
support real-time mode of operation whereby the contents of memory, peripheral and register locations
can be modified while the processor is running and executing code and servicing interrupts. The user can
also single step through non-time critical code while enabling time-critical interrupts to be serviced without
interference. The device implements the real-time mode in hardware within the CPU. This is a feature
unique to the 2833x/2823x device, requiring no software monitor. Additionally, special analysis hardware
is provided that allows setting of hardware breakpoint or data/address watch-points and generate various
user-selectable break events when a match occurs.
3.2.5 External Interface (XINTF)
This asynchronous interface consists of 20 address lines, 32 data lines, and three chip-select lines. The
chip-select lines are mapped to three external zones, Zones 0, 6, and 7. Each of the three zones can be
programmed with a different number of wait states, strobe signal setup and hold timing and each zone can
be programmed for extending wait states externally or not. The programmable wait-state, chip-select and
programmable strobe timing enables glueless interface to external memories and peripherals.
3.2.6 Flash
The F28335/F28235 devices contain 256K × 16 of embedded flash memory, segregated into eight 32K ×
16 sectors. The F28334/F28234 devices contain 128K × 16 of embedded flash memory, segregated into
eight 16K × 16 sectors. The F28332/F28232 devices contain 64K × 16 of embedded flash, segregated into
four 16K × 16 sectors. All the devices also contain a single 1K × 16 of OTP memory at address range
0x380400–0x3807FF. The user can individually erase, program, and validate a flash sector while leaving
other sectors untouched. However, it is not possible to use one sector of the flash or the OTP to execute
flash algorithms that erase/program other sectors. Special memory pipelining is provided to enable the
flash module to achieve higher performance. The flash/OTP is mapped to both program and data space;
therefore, it can be used to execute code or store data information. Note that addresses
0x33FFF0–0x33FFF5 are reserved for data variables and should not contain program code.
NOTE
The Flash and OTP wait-states can be configured by the application. This allows applications
running at slower frequencies to configure the flash to use fewer wait-states.
Flash effective performance can be improved by enabling the flash pipeline mode in the
Flash options register. With this mode enabled, effective performance of linear code
execution will be much faster than the raw performance indicated by the wait-state
configuration alone. The exact performance gain when using the Flash pipeline mode is
application-dependent.
For more information on the Flash options, Flash wait-state, and OTP wait-state registers,
see the TMS320x2833x, 2823x System Control and Interrupts Reference Guide (literature
number SPRUFB0).
3.2.7 M0, M1 SARAMs
All 2833x/2823x devices contain these two blocks of single access memory, each 1K × 16 in size. The
stack pointer points to the beginning of block M1 on reset. The M0 and M1 blocks, like all other memory
blocks on C28x devices, are mapped to both program and data space. Hence, the user can use M0 and
M1 to execute code or for data variables. The partitioning is performed within the linker. The C28x device
presents a unified memory map to the programmer. This makes for easier programming in high-level
languages.
Copyright © 2007–2011, Texas Instruments Incorporated
Functional Overview
43
Submit Documentation Feedback
Product Folder Link(s): TMS320F28335 TMS320F28334 TMS320F28332 TMS320F28235 TMS320F28234
TMS320F28232