L6562
the output of the multiplier in the proximity of the line voltage zero-crossings. This offset is reduced as the
instantaneous line voltage increases, so that it becomes negligible as the line voltage moves toward the
top of the sinusoid.
To maximally benefit from the THD optimizer circuit, the high-frequency filter capacitor after the bridge rec-
tifier should be minimized, compatibly with EMI filtering needs. A large capacitance, in fact, introduces a
conduction dead-angle of the AC input current in itself - even with an ideal energy transfer by the PFC pre-
regulator - thus making the action of the optimizer circuit little effective.
Figure 23. Typical application circuit (250W, Wide-range mains)
D3 1N5406
T
R4
R5
D8
1N4150
Vo=400V
Po=250W
NTC
2.5 Ω
D1
STTH5L06
C5 12 nF
R11
180 kΩ 180 kΩ
R14
750 kΩ
100 Ω
R50 10 kΩ
C3 2.2 µF
D2
R1
1.5 MΩ
R12
1N5248B
750 kΩ
R6
68 kΩ
BRIDGE
C1
1 µF
400V
C23
680 nF
STBR606
+
-
FUSE
5A/250V
R2
1.5 MΩ
5
2
1
8
3
R7
C6
10 Ω
MOS
STP12NM50
7 °C/W heat sink
100 µF
450V
7
L6562
Vac
(85V to 265V)
6
4
C2
10nF
C29
22 µF
25V
R3
22 kΩ
C4
100 nF
R9
0.33Ω
1W
R10
R13
9.53 kΩ
0.33Ω
1W
-
Boost Inductor Spec: EB0057-C (COILCRAFT)
Figure 24. Demo board (EVAL6562-80W, Wide-range mains): Electrical schematic
T
R4
R5
D8
1N4150
Vo=400V
Po=80W
NTC
2.5 Ω
D1
STTH1L06
C5 12 nF
R11
180 kΩ 180 kΩ
R14
750 kΩ
100 Ω
R50 12 kΩ
C3 680 nF
D2
R1
750 kΩ
R12
1N5248B
750 kΩ
R6
68 kΩ
BRIDGE
DF06M
C1
0.47 µF
400V
C23
330 nF
+
-
FUSE
4A/250V
R2
750 kΩ
5
2
1
8
3
R7
C6
33 Ω
MOS
47 µF
450V
7
L6562
STP8NM50
Vac
(85V to 265V)
6
4
C2
10nF
C29
22 µF
25V
R3
10 kΩ
C4
100 nF
R9
R10
R13
0.82Ω
0.6 W
0.82Ω
0.6 W
9.53 kΩ
-
Boost Inductor Spec (ITACOIL E2543/E)
E25x13x7 core, 3C85 ferrite
1.5 mm gap for 0.7 mH primary inductance
Primary: 105 turns 20x0.1 mm
Secondary: 11 turns 0.1 mm
10/16