D a t a S h e e t ( P r e l i m i n a r y )
Table 7.17 Write Operation Status
DQ7
DQ5
DQ2
RY/
Status
(Note 2)
DQ6
(Note 1) DQ3
(Note 2)
DQ1
0
BY#
Embedded Program Algorithm
Embedded Erase Algorithm
Program-Suspended
DQ7#
0
Toggle
Toggle
0
0
N/A
1
No toggle
Toggle
0
0
Standard
Mode
N/A
Invalid (not allowed)
Data
1
1
1
1
0
Program
Suspend
Mode
Program-
Sector
Suspend
Non-Program
Read
Suspended Sector
Erase-Suspended
1
No toggle
Toggle
0
N/A
Toggle
N/A
N/A
N/A
Erase-
Sector
Suspend
Erase
Suspend
Mode
Non-Erase
Read
Data
Suspended Sector
Erase-Suspend-Program
(Embedded Program)
DQ7#
0
N/A
Busy (Note 3)
Abort (Note 4)
DQ7#
DQ7#
Toggle
Toggle
0
0
N/A
N/A
N/A
N/A
0
1
0
0
Write-to-
Buffer
Notes
1. DQ5 switches to 1 when an Embedded Program, Embedded Erase, or Write-to-Buffer operation has exceeded the maximum timing limits.
Refer toDQ5: Exceeded Timing Limits on page 39 for more information.
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further details.
3. The Data# Polling algorithm should be used to monitor the last loaded write-buffer address location.
4. DQ1 switches to 1 when the device has aborted the write-to-buffer operation
7.9
Writing Commands/Command Sequences
During a write operation, the system must drive CE# and WE# to VIL and OE# to VIH when providing an
address, command, and data. Addresses are latched on the last falling edge of WE# or CE#, while data is
latched on the 1st rising edge of WE# or CE#. An erase operation can erase one sector, multiple sectors, or
the entire device. Table 6.2–Table 6.3 indicate the address space that each sector occupies. The device
address space is divided into uniform 64KW/128KB sectors. A sector address is the set of address bits
required to uniquely select a sector. ICC2 in “DC Characteristics” represents the active current specification for
the write mode. “AC Characteristics” contains timing specification tables and timing diagrams for write
operations.
7.9.1
RY/BY#
The RY/BY# is a dedicated, open-drain output pin that indicates whether an Embedded Algorithm is in
progress or complete. The RY/BY# status is valid after the rising edge of the final WE# pulse in the command
sequence. Since RY/BY# is an open-drain output, several RY/BY# pins can be tied together in parallel with a
pull-up resistor to VCC. This feature allows the host system to detect when data is ready to be read by simply
monitoring the RY/BY# pin, which is a dedicated output and controlled by CE# (not OE#).
7.9.2
Hardware Reset
The RESET# input provides a hardware method of resetting the device to reading array data. When RESET#
is driven low for at least a period of tRP (RESET# Pulse Width), the device immediately terminates any
operation in progress, tristates all outputs, resets the configuration register, and ignores all read/write
commands for the duration of the RESET# pulse. The device also resets the internal state machine to reading
array data.
To ensure data integrity Program/Erase operations that were interrupted should be reinitiated once the device
is ready to accept another command sequence.
When RESET# is held at VSS, the device draws VCC reset current (ICC5). If RESET# is held at VIL, but not at
VSS, the standby current is greater. RESET# may be tied to the system reset circuitry which enables the
system to read the boot-up firmware from the Flash memory upon a system reset. See Figure 11.7
on page 58 and Figure 11.8 on page 59 for timing diagrams.
40
S29GL-P MirrorBit® Flash Family
S29GL-P_00_A7 November 8, 2007