欢迎访问ic37.com |
会员登录 免费注册
发布采购

AM26LV400BT-55REI 参数 Datasheet PDF下载

AM26LV400BT-55REI图片预览
型号: AM26LV400BT-55REI
PDF下载: 下载PDF文件 查看货源
内容描述: 4兆位( 512K的×8位/ 256千×16位) CMOS 3.0伏只引导扇区闪存 [4 Megabit (512 K x 8-Bit/256 K x 16-Bit) CMOS 3.0 Volt-only Boot Sector Flash Memory]
分类和应用: 闪存
文件页数/大小: 48 页 / 1129 K
品牌: SPANSION [ SPANSION ]
 浏览型号AM26LV400BT-55REI的Datasheet PDF文件第1页浏览型号AM26LV400BT-55REI的Datasheet PDF文件第2页浏览型号AM26LV400BT-55REI的Datasheet PDF文件第3页浏览型号AM26LV400BT-55REI的Datasheet PDF文件第5页浏览型号AM26LV400BT-55REI的Datasheet PDF文件第6页浏览型号AM26LV400BT-55REI的Datasheet PDF文件第7页浏览型号AM26LV400BT-55REI的Datasheet PDF文件第8页浏览型号AM26LV400BT-55REI的Datasheet PDF文件第9页  
D A T A
S H E E T
GENERAL DESCRIPTION
The Am29LV400B is a 4 Mbit, 3.0 volt-only Flash
memory organized as 524,288 bytes or 262,144
words. The device is offered in 48-ball FBGA, 44-pin
SO, and 48-pin TSOP packages. The word-wide data
(x16) appears on DQ15–DQ0; the byte-wide (x8) data
appears on DQ7–DQ0. This device is designed to be
programmed in-system using only a single 3.0 volt V
CC
supply. No V
PP
is required for write or erase opera-
tions. The device can also be programmed in standard
EPROM programmers.
This device is manufactured using AMD’s 0.32 µm pro-
cess technology, and offers all the features and bene-
fits of the Am29LV400, which was manufactured using
0 . 5 µ m p r o c e s s t e c h n o l o gy. I n a d d i t i o n , t h e
Am29LV400B features unlock bypass programming
and in-system sector protection/unprotection.
The standard device offers access times of 55, 70, 90
and 120 ns, allowing high speed microprocessors to
operate without wait states. To eliminate bus conten-
tion the device has separate chip enable (CE#), write
enable (WE#) and output enable (OE#) controls.
The device requires only a
single 3.0 volt power sup-
ply
for both read and write functions. Internally gener-
ated and regulated voltages are provided for the
program and erase operations.
The device is entirely command set compatible with
the
JEDEC single-power-supply Flash standard.
Commands are written to the command register using
standard microprocessor write timings. Register con-
tents serve as input to an internal state-machine that
controls the erase and programming circuitry. Write
cycles also internally latch addresses and data
needed for the programming and erase operations.
Reading data out of the device is similar to reading
from other Flash or EPROM devices.
Device programming occurs by executing the program
command sequence. This initiates the
Embedded
Program
algorithm—an internal algorithm that auto-
matically times the program pulse widths and verifies
proper cell margin. The
Unlock Bypass
mode facili-
tates faster programming times by requiring only two
write cycles to program data instead of four.
Device erasure occurs by executing the erase com-
mand sequence. This initiates the
Embedded Erase
algorithm—an internal algorithm that automatically
pre-programs the array (if it is not already programmed)
before executing the erase operation. During erase,
the device automatically times the erase pulse widths
and verifies proper cell margin.
The host system can detect whether a program or
erase operation is complete by observing the RY/BY#
pin, or by reading the DQ7 (Data# Polling) and DQ6
(toggle)
status bits.
After a program or erase cycle
has been completed, the device is ready to read array
data or accept another command.
The
sector erase architecture
allows memory sec-
tors to be erased and reprogrammed without affecting
the data contents of other sectors. The device is fully
erased when shipped from the factory.
Hardware data protection
measures include a low
V
CC
detector that automatically inhibits write opera-
tions during power transitions. The
hardware sector
protection
feature disables both program and erase
operations in any combination of the sectors of mem-
ory. This can be achieved in-system or via program-
ming equipment.
The
Erase Suspend
feature enables the user to put
erase on hold for any period of time to read data from,
or program data to, any sector that is not selected for
erasure. True background erase can thus be achieved.
The
hardware RESET# pin
terminates any operation
in progress and resets the internal state machine to
reading array data. The RESET# pin may be tied to
the system reset circuitry. A system reset would thus
also reset the device, enabling the system micropro-
cessor to read the boot-up firmware from the Flash
memory.
The device offers two power-saving features. When
addresses have been stable for a specified amount of
time, the device enters the
automatic sleep mode.
The system can also place the device into the
standby mode.
Power consumption is greatly re-
duced in both these modes.
AMD’s Flash technology combines years of Flash
memory manufacturing experience to produce the
highest levels of quality, reliability and cost effectiveness.
The device electrically erases all bits within a sector si-
multaneously via Fowler-Nordheim tunneling. The data is
programmed using hot electron injection.
2
Am29LV400B
21523D4 December 4, 2006