欢迎访问ic37.com |
会员登录 免费注册
发布采购

S3C80C5 参数 Datasheet PDF下载

S3C80C5图片预览
型号: S3C80C5
PDF下载: 下载PDF文件 查看货源
内容描述: 8位CMOS微控制器 [8-Bit CMOS Microcontrollers]
分类和应用: 微控制器
文件页数/大小: 263 页 / 1407 K
品牌: SAMSUNG [ SAMSUNG ]
 浏览型号S3C80C5的Datasheet PDF文件第1页浏览型号S3C80C5的Datasheet PDF文件第2页浏览型号S3C80C5的Datasheet PDF文件第3页浏览型号S3C80C5的Datasheet PDF文件第4页浏览型号S3C80C5的Datasheet PDF文件第6页浏览型号S3C80C5的Datasheet PDF文件第7页浏览型号S3C80C5的Datasheet PDF文件第8页浏览型号S3C80C5的Datasheet PDF文件第9页  
Table of Contents  
Part I — Programming Model  
Chapter 1  
Product Overview  
Overview.................................................................................................................................................1-1  
S3P80C5/C80C5/C80C8 Microcontroller .................................................................................................1-1  
Features..................................................................................................................................................1-2  
CPU ........................................................................................................................................................1-2  
Block Diagram.........................................................................................................................................1-3  
Pin Assignments......................................................................................................................................1-4  
Pin Descriptions.......................................................................................................................................1-5  
Pin Circuits..............................................................................................................................................1-6  
Chapter 2  
Address Spaces  
Overview.................................................................................................................................................2-1  
Program Memory (ROM) .........................................................................................................................2-2  
Register Architecture ...............................................................................................................................2-3  
Register Page Pointer (PP) .............................................................................................................2-5  
Register Set 1 .................................................................................................................................2-6  
Register Set 2 .................................................................................................................................2-6  
Prime Register Space .....................................................................................................................2-7  
Working Registers...........................................................................................................................2-8  
Using The Register Pointers............................................................................................................2-9  
Register Addressing.................................................................................................................................2-11  
Common Working Register Area (C0H–CFH)..................................................................................2-13  
4-Bit Working Register Addressing..................................................................................................2-14  
8-Bit Working Register Addressing..................................................................................................2-16  
System and User Stacks..........................................................................................................................2-18  
Chapter 3  
Addressing Modes  
Overview.................................................................................................................................................3-1  
Register Addressing Mode (R).........................................................................................................3-2  
Indirect Register Addressing Mode (IR) ...........................................................................................3-3  
Indexed Addressing Mode (X)..........................................................................................................3-7  
Direct Address Mode (DA)...............................................................................................................3-10  
Indirect Address Mode (IA)..............................................................................................................3-12  
Relative Address Mode (RA) ...........................................................................................................3-13  
Immediate Mode (IM)......................................................................................................................3-14  
S3P80C5/C80C5/C80C8 MICROCONTROLLER  
v
Table of Contents (Continued  
Chapter  
Control Registers  
................................  
................................  
.................  
Chapter 5  
Overview ................................  
Interrupt Types  
................................................................  
................................................................  
................................................................  
5-1  
5-2  
5-3  
5-5  
Interrupt Structure  
Interrupt Vector Addresses  
Enable/Disable Interrupt Instructions (EI, DI)  
................................................................  
...................................................  
System-Level Interrupt Control Registers ................................  
................................................................  
................................................................  
................................................................  
........................5-7  
..5-8  
5-9  
5-10  
5-11  
5-12  
System Mode Register (SYM)  
Interrupt Mask Register (IMR)  
Interrupt Priority Register (IPR)  
Interrupt Request Register (IRQ)  
Interrupt Pending Function Types  
Interrupt Source Polling Sequence  
Interrupt Service Routines  
................................................................  
................................................................  
................................................................ 5-14  
................................................................ 5-15  
................................................................ 5-16  
................................................................  
5-16  
Generating Interrupt Vector Addresses  
Nesting of Vectored Interrupts ................................  
Instruction Pointer (IP)................................  
............................................................  
.........................................  
.....................................................  
7
Fast Interrupt Processing  
................................................................  
5-17  
Chapter  
Instruction Set  
Overview  
................................................................  
................................................................  
Register Addressing ................................  
.................6-1  
......................................  
........................................................  
...........................................................  
..................................................  
Addressing Modes................................  
Flags Register (FLAGS) ................................  
Flag Descriptions................................  
Instruction Set Notation ................................  
Condition Codes................................  
.............................................................  
...................................................  
..............................................................  
...................................................  
Instruction Descriptions ................................  
vi  
S3P80C5/C80C5/C80C8 MICROCONTROLLER  
Table of Contents (Continued)  
Part II Hardware Descriptions  
Chapter 7  
Clock Circuit  
Overview.................................................................................................................................................7-1  
System Clock Circuit.......................................................................................................................7-1  
Clock Status During Power-Down Modes.........................................................................................7-2  
System Clock Control Register (CLKCON)......................................................................................7-3  
Chapter 8  
RESET and Power-Down  
System Reset..........................................................................................................................................8-1  
LVD Reset.......................................................................................................................................8-1  
Interrupt with Reset (INTR)..............................................................................................................8-2  
Watch-Dog Timer Reset..................................................................................................................8-2  
Power-on Reset (POR)....................................................................................................................8-2  
System Reset Operation .................................................................................................................8-3  
Hardware Reset Values...................................................................................................................8-4  
Power-Down Modes.................................................................................................................................8-6  
Stop mode.......................................................................................................................................8-6  
Using POR to Release Stop Mode...................................................................................................8-6  
Using an INTR to Release Stop Mode .............................................................................................8-6  
Idle Mode........................................................................................................................................8-9  
Summary Table of Stop Mode, and Idle Mode.................................................................................8-10  
Chapter 9  
I/O Ports  
Overview.................................................................................................................................................9-1  
Port Data Registers.........................................................................................................................9-2  
Pull-Up Resistor Enable Registers...................................................................................................9-2  
Port 0..............................................................................................................................................9-4  
Port 0 Interrupt Enable Register (P0INT).........................................................................................9-5  
Port 0 Interrupt Pending Register (P0PND)......................................................................................9-5  
Port 1..............................................................................................................................................9-7  
Port 2..............................................................................................................................................9-9  
Chapter 10  
Basic Timer and Timer 0  
Module Overview.....................................................................................................................................10-1  
Basic Timer Control Register (BTCON) ...............................................................................................10-1  
Basic Timer Function Description ........................................................................................................10-3  
Timer 0 Control Register (T0CON) ......................................................................................................10-3  
Timer 0 Function Description...............................................................................................................10-5  
S3P80C5/C80C5/C80C8 MICROCONTROLLER  
vii  
Table of Contents (Concluded)  
Chapter 11  
Timer 1  
Overview .................................................................................................................................................11-1  
Timer 1 Overflow Interrupt...............................................................................................................11-2  
Timer 1 Match Interrupt ...................................................................................................................11-2  
Timer 1 Control Register (T1CON) ..................................................................................................11-4  
Chapter 12  
Counter A  
Overview .................................................................................................................................................12-1  
Counter A Control Register (CACON)..............................................................................................12-3  
Counter A Pulse Width Calculations................................................................................................12-4  
Chapter 13  
Electrical Data  
Overview .................................................................................................................................................13-1  
Chapter 14  
Mechanical Data  
Overview .................................................................................................................................................14-1  
viii  
S3P80C5/C80C5/C80C8 MICROCONTROLLER  
List of Figures  
Figure  
Title  
Page  
Number  
Number  
1-1  
1-2  
1-3  
1-4  
1-5  
1-6  
1-7  
Block Diagram........................................................................................................1-3  
Pin Assignment Diagram (24-Pin SOP/SDIP Package) ..........................................1-4  
Pin Circuit Type 1 (Port 0)......................................................................................1-6  
Pin Circuit Type 2 (Port 1)......................................................................................1-7  
Pin Circuit Type 3 (P2.0) ........................................................................................1-8  
Pin Circuit Type 4 (P2.1) ........................................................................................1-9  
Pin Circuit Type 5 (P2.2) ........................................................................................1-10  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-8  
Program Memory Address Space...........................................................................2-2  
Internal Register File Organization .........................................................................2-4  
Register Page Pointer (PP) ....................................................................................2-5  
Set 1, Set 2, and Prime Area Register Map............................................................2-7  
8-Byte Working Register Areas (Slices)..................................................................2-8  
Contiguous 16-Byte Working Register Block ..........................................................2-9  
Non-Contiguous 16-Byte Working Register Block...................................................2-10  
16-Bit Register Pair................................................................................................2-11  
Register File Addressing.........................................................................................2-12  
Common Working Register Area............................................................................2-13  
4-Bit Working Register Addressing.........................................................................2-15  
4-Bit Working Register Addressing Example ..........................................................2-15  
8-Bit Working Register Addressing.........................................................................2-16  
8-Bit Working Register Addressing Example ..........................................................2-17  
Stack Operations....................................................................................................2-18  
2-9  
2-10  
2-11  
2-12  
2-13  
2-14  
2-15  
3-1  
3-2  
3-3  
3-4  
3-5  
3-6  
3-7  
3-8  
Register Addressing ...............................................................................................3-2  
Working Register Addressing .................................................................................3-2  
Indirect Register Addressing to Register File ..........................................................3-3  
Indirect Register Addressing to Program Memory...................................................3-4  
Indirect Working Register Addressing to Register File ............................................3-5  
Indirect Working Register Addressing to Program or Data Memory ........................3-6  
Indexed Addressing to Register File .......................................................................3-7  
Indexed Addressing to Program or Data Memory with Short Offset ........................3-8  
Indexed Addressing to Program or Data Memory ...................................................3-9  
Direct Addressing for Load Instructions ..................................................................3-10  
Direct Addressing for Call and Jump Instructions....................................................3-11  
Indirect Addressing.................................................................................................3-12  
Relative Addressing ...............................................................................................3-13  
Immediate Addressing............................................................................................3-14  
3-9  
3-10  
3-11  
3-12  
3-13  
3-14  
4-1  
Register Description Format...................................................................................4-4  
S3P80C5/C80C5/C80C8 MICROCONTROLLER  
ix  
List of Figures (Continued)  
Figure  
Title  
Page  
Number  
Number  
5-1  
5-3  
5-2  
5-4  
5-5  
5-6  
5-7  
5-8  
5-9  
KS88-Series Interrupt Types...................................................................................5-2  
ROM Vector Address Area .....................................................................................5-5  
Interrupt Structure ..................................................................................................5-4  
Interrupt Function Diagram.....................................................................................5-8  
System Mode Register (SYM) ................................................................................5-10  
Interrupt Mask Register (IMR).................................................................................5-11  
Interrupt Request Priority Groups ...........................................................................5-12  
Interrupt Priority Register (IPR)...............................................................................5-13  
Interrupt Request Register (IRQ) ............................................................................5-14  
6-1  
System Flags Register (FLAGS).............................................................................6-6  
7-1  
7-2  
7-3  
7-4  
Main Oscillator Circuit (External Crystal or Ceramic Resonator) .............................7-1  
External Clock Circuit.............................................................................................7-1  
System Clock Circuit Diagram................................................................................7-2  
System Clock Control Register (CLKCON) .............................................................7-3  
8-1  
8-2  
8-3  
Reset Block Diagram..............................................................................................8-1  
Power-on Reset Circuit...........................................................................................8-2  
Timing Diagram for Power-on Reset Circuit............................................................8-3  
9-1  
9-2  
9-3  
9-4  
9-5  
9-6  
9-7  
9-8  
9-9  
9-10  
S3P80C5/C80C5/C80C8 I/O Port 0 Data Register Format......................................9-2  
S3P80C5/C80C5/C80C8 I/O Port 1 Data Register Format......................................9-3  
Port 0 High-Byte Control Register (P0CONH).........................................................9-4  
Port 0 Low-Byte Control Register (P0CONL) ..........................................................9-5  
Port 0 External Interrupt Control Register (P0INT)..................................................9-6  
Port 0 External Interrupt Pending Register (P0PND)...............................................9-7  
Port 1 High-Byte Control Register (P1CONH).........................................................9-7  
Port 1 Low-Byte Control Register (P1CONL) ..........................................................9-8  
Port 2 Control Register (P2CON)............................................................................9-9  
Port 2 Data Register (P2) .......................................................................................9-10  
x
S3P80C5/C80C5/C80C8 MICROCONTROLLER  
List of Figures (Concluded)  
Figure  
Title  
Page  
Number  
Number  
10-1  
10-2  
10-3  
10-4  
Basic Timer Control Register (BTCON)..................................................................10-2  
Timer 0 Control Register (T0CON).........................................................................10-4  
Simplified Timer 0 Function Diagram: Interval Timer Mode....................................10-5  
Simplified Timer 0 Function Diagram: PWM Mode.................................................10-6  
11-1  
11-2  
11-3  
11-4  
Simplified Timer 1 Function Diagram: Interval Timer Mode....................................11-2  
Timer 1 Block Diagram...........................................................................................11-3  
Timer 1 Control Register (T1CON).........................................................................11-4  
Timer 1 Registers...................................................................................................11-5  
12-1  
12-2  
12-3  
12-4  
Counter A Block Diagram.......................................................................................12-2  
Counter A Control Register (CACON).....................................................................12-3  
Counter A Registers ...............................................................................................12-4  
Counter A Output Flip-Flop Waveforms in Repeat Mode........................................12-5  
13-1  
13-2  
Input Timing for External Interrupts (Port 0)............................................................13-5  
Operating Voltage Range ......................................................................................13-6  
14-1  
14-2  
24-Pin SOP Package Mechanical Data ..................................................................14-1  
24-Pin SDIP Package Mechanical Data..................................................................14-2  
S3P80C5/C80C5/C80C8 MICROCONTROLLER  
xi  
List of Tables  
Table  
Title  
Page  
Number  
Number  
1-1  
2-1  
4-1  
Pin Descriptions .....................................................................................................1-5  
Register Type Summary.........................................................................................2-3  
Mapped Registers (Set1)........................................................................................4-2  
5-1  
5-2  
5-3  
Interrupt Vectors.....................................................................................................5-6  
Interrupt Control Register Overview .......................................................................5-7  
Interrupt Source Control and Data Registers...........................................................5-9  
6-1  
6-2  
6-3  
6-4  
6-5  
6-6  
Instruction Group Summary....................................................................................6-2  
Flag Notation Conventions .....................................................................................6-8  
Instruction Set Symbols..........................................................................................6-8  
Instruction Notation Conventions............................................................................6-9  
Opcode Quick Reference .......................................................................................6-10  
Condition Codes.....................................................................................................6-12  
8-1  
8-2  
Set 1 Register Values After Reset ..........................................................................8-4  
Summary of Each Mode.........................................................................................8-10  
9-1  
9-2  
S3P80C5/C80C5/C80C8 Port Configuration Overview...........................................9-1  
Port Data Register Summary..................................................................................9-2  
13-1  
13-2  
13-3  
13-4  
13-5  
13-6  
13-7  
13-8  
Absolute Maximum Ratings....................................................................................13-2  
D.C. Electrical Characteristics................................................................................13-2  
Characteristics of Low Voltage Detect circuit..........................................................13-4  
Data Retention Supply Voltage in Stop Mode.........................................................13-4  
Input/Output Capacitance.......................................................................................13-4  
A.C. Electrical Characteristics ................................................................................13-4  
Oscillation Characteristics ......................................................................................13-5  
Oscillation Stabilization Time .................................................................................13-6  
S3P80C5/C80C5/C80C8 MICROCONTROLLER  
xiii  
List of Programming Tips  
Description  
Chapter 2:  
Page  
Number  
Address Spaces  
Setting the Register Pointers ...............................................................................................................2-9  
Using the RPs to Calculate the Sum of a Series of Registers...............................................................2-10  
Addressing the Common Working Register Area.................................................................................2-14  
Standard Stack Operations Using PUSH and POP..............................................................................2-19  
Chapter 8:  
RESET and Power-Down  
To Divide STOP Mode Releasing and POR.........................................................................................8-8  
Chapter 10:  
Basic Timer and Timer 0  
Configuring the Basic Timer ................................................................................................................10-8  
Programming Timer 0..........................................................................................................................10-9  
Chapter 12:  
Counter A  
To Generate 38 kHz, 1/3duty Signal Through P2.1..............................................................................12-6  
To Generate a One Pulse Signal Through P2.1...................................................................................12-7  
S3P80C5/C80C5/C80C8 MICROCONTROLLER  
xv  
List of Register Descriptions  
Register  
Identifier  
Full Register Name  
Page  
Number  
BTCON  
CACON  
Basic Timer Control Register..................................................................................4-5  
Counter A Control Register.....................................................................................4-6  
CLKCON  
EMT  
System Clock Control Register...............................................................................4-7  
External Memory Timing Register ..........................................................................4-8  
System Flags Register ...........................................................................................4-9  
Interrupt Mask Register ..........................................................................................4-10  
Instruction Pointer (High Byte) ...............................................................................4-11  
Instruction Pointer (Low Byte) ................................................................................4-11  
Interrupt Priority Register........................................................................................4-12  
Interrupt Request Register......................................................................................4-13  
Port 0 Control Register (High Byte) ........................................................................4-14  
Port 0 Control Register (Low Byte) .........................................................................4-15  
Port 0 Interrupt Control Register.............................................................................4-16  
FLAGS  
IMR  
IPH  
IPL  
IPR  
IRQ  
P0CONH  
P0CONL  
P0INT  
P0PND  
P0PUR  
Port 0 Interrupt Pending Register ...........................................................................4-17  
Port 0 Pull-up Resistor Enable Register..................................................................4-18  
P1CONH  
P1CONL  
Port 1 Control Register (High Byte) ........................................................................4-19  
Port 1 Control Register (Low Byte) .........................................................................4-20  
P1PUR  
P2CON  
Port 1 Pull-up Resistor Enable Register .................................................................4-21  
Port 2 Control Register...........................................................................................4-22  
PP  
Register Page Pointer ............................................................................................4-23  
Register Pointer 0...................................................................................................4-24  
Register Pointer 1...................................................................................................4-24  
Stack Pointer (Low Byte)........................................................................................4-25  
Stop Control Register.............................................................................................4-25  
System Mode Register ...........................................................................................4-26  
Timer 0 Control Register ........................................................................................4-27  
Timer 1 Control Register ........................................................................................4-28  
RP0  
RP1  
SPL  
STOPCON  
SYM  
T0CON  
T1CON  
S3P80C5/C80C5/C80C8 MICROCONTROLLER  
xvii  
List of Instruction Descriptions  
Instruction  
Mnemonic  
Full Register Name  
Page  
Number  
ADC  
ADD  
AND  
BAND  
BCP  
BITC  
BITR  
BITS  
BOR  
BTJRF  
BTJRT  
BXOR  
CALL  
CCF  
CLR  
Add with Carry........................................................................................................6-14  
Add ........................................................................................................................6-15  
Logical AND...........................................................................................................6-16  
Bit AND..................................................................................................................6-17  
Bit Compare...........................................................................................................6-18  
Bit Complement .....................................................................................................6-19  
Bit Reset ................................................................................................................6-20  
Bit Set....................................................................................................................6-21  
Bit OR....................................................................................................................6-22  
Bit Test, Jump Relative on False............................................................................6-23  
Bit Test, Jump Relative on True .............................................................................6-24  
Bit XOR..................................................................................................................6-25  
Call Procedure .......................................................................................................6-26  
Complement Carry Flag .........................................................................................6-27  
Clear......................................................................................................................6-28  
Complement...........................................................................................................6-29  
Compare................................................................................................................6-30  
Compare, Increment, and Jump on Equal ..............................................................6-31  
Compare, Increment, and Jump on Non-Equal.......................................................6-32  
Decimal Adjust.......................................................................................................6-33  
Decrement .............................................................................................................6-35  
Decrement Word....................................................................................................6-36  
Disable Interrupts ...................................................................................................6-37  
Divide (Unsigned)...................................................................................................6-38  
Decrement and Jump if Non-Zero ..........................................................................6-39  
Enable Interrupts....................................................................................................6-40  
Enter......................................................................................................................6-41  
Exit ........................................................................................................................6-42  
Idle Operation ........................................................................................................6-43  
Increment...............................................................................................................6-44  
Increment Word .....................................................................................................6-45  
Interrupt Return......................................................................................................6-46  
Jump......................................................................................................................6-47  
Jump Relative........................................................................................................6-48  
Load.......................................................................................................................6-49  
Load Bit..................................................................................................................6-51  
COM  
CP  
CPIJE  
CPIJNE  
DA  
DEC  
DECW  
DI  
DIV  
DJNZ  
EI  
ENTER  
EXIT  
IDLE  
INC  
INCW  
IRET  
JP  
JR  
LD  
LDB  
S3P80C5/C80C5/C80C8 MICROCONTROLLER  
xix  
List of Instruction Descriptions (Continued)  
Instruction  
Mnemonic  
Full Register Name  
Page  
Number  
LDC/LDE  
LDCD/LDED  
LDCI/LDEI  
LDCPD/LDEPD  
LDCPI/LDEPI  
LDW  
Load Memory .........................................................................................................6-52  
Load Memory and Decrement ................................................................................6-54  
Load Memory and Increment..................................................................................6-55  
Load Memory with Pre-Decrement .........................................................................6-56  
Load Memory with Pre-Increment...........................................................................6-57  
Load Word .............................................................................................................6-58  
Multiply (Unsigned).................................................................................................6-59  
Next .......................................................................................................................6-60  
No Operation..........................................................................................................6-61  
Logical OR .............................................................................................................6-62  
Pop from Stack.......................................................................................................6-63  
Pop User Stack (Decrementing) .............................................................................6-64  
Pop User Stack (Incrementing)...............................................................................6-65  
Push to Stack .........................................................................................................6-66  
Push User Stack (Decrementing)............................................................................6-67  
Push User Stack (Incrementing) .............................................................................6-68  
Reset Carry Flag ....................................................................................................6-69  
Return ....................................................................................................................6-70  
Rotate Left .............................................................................................................6-71  
Rotate Left through Carry .......................................................................................6-72  
Rotate Right ...........................................................................................................6-73  
Rotate Right through Carry.....................................................................................6-74  
Select Bank 0.........................................................................................................6-75  
Select Bank 1.........................................................................................................6-76  
Subtract with Carry.................................................................................................6-77  
Set Carry Flag........................................................................................................6-78  
Shift Right Arithmetic..............................................................................................6-79  
Set Register Pointer ...............................................................................................6-80  
Stop Operation.......................................................................................................6-81  
Subtract..................................................................................................................6-82  
Swap Nibbles .........................................................................................................6-83  
Test Complement under Mask................................................................................6-84  
Test under Mask.....................................................................................................6-85  
Wait for Interrupt ....................................................................................................6-86  
Logical Exclusive OR .............................................................................................6-87  
MULT  
NEXT  
NOP  
OR  
POP  
POPUD  
POPUI  
PUSH  
PUSHUD  
PUSHUI  
RCF  
RET  
RL  
RLC  
RR  
RRC  
SB0  
SB1  
SBC  
SCF  
SRA  
SRP/SRP0/SRP1  
STOP  
SUB  
SWAP  
TCM  
TM  
WFI  
XOR  
xx  
S3P80C5/C80C5/C80C8 MICROCONTROLLER  
S3P80C5/C80C5/C80C8  
PRODUCT OVERVIEW  
1
PRODUCT OVERVIEW  
OVERVIEW  
Samsung's S3C8-series of 8-bit single-chip CMOS microcontrollers offers a fast and efficient CPU, a wide range  
of integrated peripherals, and various mask-programmable ROM sizes. Important CPU features include:  
— Efficient register-oriented architecture  
— Selectable CPU clock sources  
— Idle and Stop power-down mode release by interrupt  
— Built-in basic timer with watchdog function  
A sophisticated interrupt structure recognizes up to eight interrupt levels. Each level can have one or more  
interrupt sources and vectors. Fast interrupt processing (within a minimum six CPU clocks) can be assigned to  
specific interrupt levels.  
S3P80C5/C80C5/C80C8 MICROCONTROLLER  
The S3P80C5/C80C5/C80C8 single-chip CMOS microcontroller is fabricated using a highly advanced CMOS  
process and is based on Samsung's newest CPU architecture.  
The S3C80C5/C80C8 is the microcontroller which has mask-programmable ROM.  
The S3P80C5 is the microcontroller which has one-time-programmable EPROM.  
Using a proven modular design approach, Samsung engineers developed the S3P80C5/C80C5/C80C8 by  
integrating the following peripheral modules with the powerful SAM87 RC core:  
— Three programmable I/O ports, including two 8-bit ports and one 3-bit port, for a total of 19 pins.  
— Internal LVD circuit and eight bit-programmable pins for external interrupts.  
— One 8-bit basic timer for oscillation stabilization and watchdog functions (system reset).  
— One 8-bit timer/counter and one 16-bit timer/counter with selectable operating modes.  
— One 8-bit counter with auto-reload function and one-shot or repeat control.  
The S3P80C5/C80C5/C80C8 is a versatile general-purpose microcontroller which is especially suitable for use  
as remote transmitter controller. It is currently available in a 24-pin SOP and SDIP package.  
1-1  
PRODUCT OVERVIEW  
S3P80C5/C80C5/C80C8  
FEATURES  
CPU  
Timers and Timer/Counters  
·
One programmable 8-bit basic timer (BT) for  
oscillation stabilization control or watchdog timer  
function  
·
SAM87RC CPU core  
Memory  
·
·
One 8-bit timer/counter (Timer 0) with two  
operating modes; Interval mode and PWM mode.  
·
Program memory (ROM)  
– S3C80C8: 8-Kbyte  
(0000H–1FFFH)  
One 16-bit timer/counter with one operating  
modes; Interval mode  
– S3C80C5: 15,872 byte  
(0000H–3E00H)  
Low Voltage Detect Circuit  
·
Data memory: 256-byte RAM  
·
·
Low voltage detect for reset or Back-up mode.  
Low level detect voltage  
– S3C80C5/C80C8:  
1.90 V (Typ) ± 200 mV  
Instruction Set  
·
·
78 instructions  
IDLE and STOP instructions added for power-  
down modes  
Auto Reset Function  
·
·
Reset occurs when stop mode is released by P0.  
Instruction Execution Time  
1000 ns at 4-MHz fOSC (minimum)  
When a falling edge is detected at Port 0 during  
Stop mode, system reset occurs.  
·
Interrupts  
Operating Temperature Range  
·
·
13 interrupt sources with 10 vector.  
5 level, 10 vector interrupt structure  
° °  
–40 C to + 85 C  
Operating Voltage Range  
1.7 V to 3.6 V at 4 MHz fOSC  
I/O Ports  
·
·
Two 8-bit I/O ports (P0-P1) and one 3-bit port  
(P2) for a total of 19 bit-programmable pins  
Package Type  
24-pin SOP/SDIP  
·
Eight input pins for external interrupts  
·
Carrier Frequency Generator  
·
One 8-bit counter with auto-reload function and  
one-shot or repeat control (Counter A)  
Back-up mode  
·
When VDD is lower than VLVD, the chip enters  
Back-up mode to block oscillation and reduce the  
current consumption.  
1-2  
S3P80C5/C80C5/C80C8  
PRODUCT OVERVIEW  
BLOCK DIAGRAM  
P0.0-P0.7/INT0-INT4  
Port 0(INTR)  
P1.0-P1.7  
Port 1  
LVD  
TEST  
Internal Bus  
Main  
OSC  
XIN  
XOUT  
P2.0/T0PWM  
P2.1/REM  
P2.2  
Port I/O and Interrupt  
Control  
Port 2  
8-bit  
Basic  
Timer  
SAM87RI CPU  
8-bit  
Timer/  
Counter  
Carrier  
Generator  
(Counter A)  
256-Byte  
Register File  
15-Kbyte ROM  
16-bit  
Timer/  
Counter  
Figure 1-1. Block Diagram  
1-3  
PRODUCT OVERVIEW  
S3P80C5/C80C5/C80C8  
PIN ASSIGNMENTS  
VDD  
P2.2  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VSS  
XIN  
XOUT  
TEST  
1
2
3
4
5
6
7
8
P2.1/REM/SCLK  
P2.0/T0PWN/T0CK/SDAT  
P1.7  
P1.6  
P1.5  
P1.4  
P1.3  
P1.2  
P1.1  
P1.0  
P0.0/INT0/INTR  
P0.1/INT1/INTR  
RESET/P0.2/INT2/INTR  
P0.3/INT3/INTR  
S3C80C5/C80C8  
24-SOP/SDIP  
(TOP VIEW)  
P0.4/INT4/INTR  
P0.5/INT4/INTR  
P0.6/INT4/INTR  
P0.7/INT4/INTR  
9
10  
11  
12  
Figure 1-2. Pin Assignment Diagram (24-Pin SOP/SDIP Package)  
1-4  
S3P80C5/C80C5/C80C8  
PRODUCT OVERVIEW  
PIN DESCRIPTIONS  
Table 1-1. Pin Descriptions  
Pin  
Pin  
Pin  
Circuit  
24-Pin  
Shared  
Names  
Type  
Description  
Type  
Number  
Functions  
P0.0–P0.7  
I/O  
I/O port with bit-programmable pins.  
Configurable to input or push-pull output  
mode. Pull-up resistors are assignable by  
software. Pins can be assigned individually  
as external interrupt inputs with noise filters,  
interrupt enable/ disable, and interrupt  
pending control. Interrupt with Reset(INTR)  
is assigned to Port 0.  
1
5–12  
INT0 – INT4/INTR  
P1.0–P1.7  
I/O  
I/O  
I/O port with bit-programmable pins.  
Configurable to input mode or output mode.  
Pin circuits are either push-pull or n-  
channel open-drain type. Pull-up resistors  
are assignable by software.  
2
13–20  
21–23  
P2.0  
P2.1  
P2.2  
3-bit I/O port with bit-programmable pins.  
Configurable to input mode, push-pull  
output mode, or n-channel open-drain  
output mode. Input mode with pull-up  
resistors are assignable by software. The  
two pins of port 2 have high current drive  
capability.  
3
4
5
REM/T0CK  
XIN, XOUT  
TEST  
I
System clock input and output pins  
2, 3  
4
Test signal input pin (for factory use only;  
must be connected to VSS).  
VDD  
VSS  
Power supply input pin  
Ground pin  
24  
1
1-5  
PRODUCT OVERVIEW  
S3P80C5/C80C5/C80C8  
PIN CIRCUITS  
VDD  
Pull-up  
Resistor  
Pull-up  
Enable  
VDD  
Data  
Input/Output  
Output  
Disable  
VSS  
Noise  
filter  
External  
Interrupt  
INTR (Interrupt with RESET)  
Stop  
Figure 1-3. Pin Circuit Type 1 (Port 0)  
NOTE  
Interrupt with reset (INTR) is assigned to port 0 of S3P80C5/C80C5/C80C8.  
It is designed to release stop status with reset. When the falling/rising edge is detected at any pin of Port  
0 during stop status, non vectored interrupt INTR signal occurs, after then system reset occurs  
automatically. It is designed for a application which are using “stop mode” like remote controller. If stop  
mode is not used, INTR do not operates and it can be discarded.  
1-6  
S3P80C5/C80C5/C80C8  
PRODUCT OVERVIEW  
VDD  
Pull-up  
Resistor  
Pull-up  
Enable  
VDD  
Data  
Input/Output  
Open-drain  
Output Disable  
VSS  
Noise  
filter  
Normal  
Input  
Figure 1-4. Pin Circuit Type 2 (Port 1)  
VDD  
Pull-up Resistor  
(Typical 21K  
W
)
Pull-up  
Enable  
P2CON.0  
VDD  
M
U
X
Port 2.0 Data  
T0_PWN  
Data  
P2.0/T0PWN  
Open-drain  
Output  
Disable  
VSS  
P2.0 Input  
Figure 1-5. Pin Circuit Type 3 (P2.0)  
1-7  
PRODUCT OVERVIEW  
S3P80C5/C80C5/C80C8  
VDD  
Pull-up  
Resistor  
(Typical 21KW)  
Pull-up  
Enable  
P2CON.1  
VDD  
Port 2.1 Data  
M
U
X
Data  
CAOF(CACON.0)  
Carrier On/Off (P2.5)  
P2.1/REM/T0CK  
Open-Drain  
Output  
Disable  
VSS  
P2.1 Input  
T0CK  
Noise filter  
Figure 1-6. Pin Circuit Type 4 (P2.1)  
VDD  
Pull-up Resistor  
(Typical 21K  
W
)
Pull-up  
Enable  
VDD  
Data  
In/Out  
Open-drain  
Output  
Disable  
VSS  
Normal Input  
Figure 1-7. Pin Circuit Type 5 (P2.2)  
1-8  
S3P80C5/C80C5/C80C8  
ADDRESS SPACES  
2
ADDRESS SPACES  
OVERVIEW  
The S3P80C5/C80C5/C80C8 microcontroller has two types of address space:  
— Internal program memory (ROM)  
— Internal register file  
A 16-bit address bus supports program memory operations. A separate 8-bit register bus carries addresses and  
data between the CPU and the register file.  
The S3C80C5 has an internal 15,872 byte programmable ROM, the S3C80C8 has an internal 8-Kbyte  
programmable ROM. An external memory interface is not implemented. The 256-byte physical RAM space is  
expanded into an addressable area of 320 bytes by the use of addressing modes.  
There are 312 mapped registers in the internal register file. Of these, 272 are for general-purpose use. (This  
number includes a 16-byte working register common area that is used as a " scratch area" for data operations, a  
256 prime register area that is used for general purpose and stack operation). Eighteen 8-bit registers are used  
for CPU and system control and 22 registers are mapped peripheral control and data registers.  
2-1  
ADDRESS SPACES  
S3P80C5/C80C5/C80C8  
PROGRAM MEMORY (ROM)  
Program memory stores program code or table data. The S3C80C5 has 15, 872 bytes of internal programmable  
program memory, and the program memory address range is therefore 0000H-3E00H of ROM. The S3C80C8  
has 8-Kbyte (0000H-1FFFH) of internal programmable program memory (see Figure 2-1).  
The first 256 bytes of the ROM (0H–0FFH) are reserved for interrupt vector addresses. Unused locations in this  
address range can be used as normal program memory. If you do use the vector address area to store program  
code, be careful to avoid overwriting vector addresses stored in these locations.  
The ROM address at which program execution starts after a reset is 0100H.  
(Decimal)  
(HEX)  
15,872  
3E00H  
15-Kbyte  
ROM  
S3C80C5  
8,191  
1FFFH  
S3C80C8  
8-Kbyte  
ROM  
255  
0
0FFH  
0H  
Interrupt  
Vector Area  
Figure 2-1. Program Memory Address Space  
2-2  
S3P80C5/C80C5/C80C8  
ADDRESS SPACES  
REGISTER ARCHITECTURE  
The S3P80C5/C80C5/C80C8 register file has 312 registers. The upper 64 bytes register files are addressed as  
system control register and working register. The lower 192-byte area of the physical register file(00H–BFH)  
contains freely-addressable, general-purpose registers called prime registers. It can be also used for stack  
operation.  
The extension of register space into separately addressable sets is supported internally by addressing mode  
restrictions.  
Specific register types and the area (in bytes) they occupy in the S3P80C5/C80C5/C80C8 internal register space  
are summarized in Table 2-1.  
Table 2-1. S3P80C5/C80C5/C80C8 Register Type Summary  
Register Type  
Number of Bytes  
General-purpose registers (including the 16-byte common working register area,  
the 256-byte prime register area.)  
272  
CPU and system control registers  
18  
22  
Mapped clock, peripheral, and I/O control and data registers  
Total Addressable Bytes  
312  
2-3  
ADDRESS SPACES  
S3P80C5/C80C5/C80C8  
Set 1  
Set 2  
FFH  
FFH  
System and Peripheral  
Control Registers  
(Register Addressing  
Mode)  
General-Purpose  
Data Register  
E0H  
DFH  
(Indirect Register or  
Indexed addressing  
modes or  
64-Bytes  
System Registers  
(Register Addressing  
Mode)  
D0H  
CFH  
stack operations)  
Working Registers  
(Working Register  
Addressing Mode)  
C0H  
C0H  
BFH  
256-Bytes  
192-Bytes  
Prime Data Registers  
(All Addressing Modes)  
~
~
00H  
Figure 2-2. Internal Register File Organization  
2-4  
S3P80C5/C80C5/C80C8  
ADDRESS SPACES  
REGISTER PAGE POINTER (PP)  
The S3C8-series architecture supports the logical expansion of the physical 256-byte internal register file (using  
an 8-bit data bus) into as many as 15 separately addressable register pages. Page addressing is controlled by  
the register page pointer (PP, DFH). In the S3P80C5/C80C5/C80C8 microcontroller, a paged register file  
expansion is not implemented and the register page pointer settings therefore always point to "page 0."  
Following a reset, the page pointer's source value (lower nibble) and destination value (upper nibble) are always  
'0000', automatically selecting page 0 as the source and destination page for register addressing. These page  
pointer (PP) register settings, as shown in Figure 2-3, should not be modified during normal operation.  
Register Page Pointer (PP)  
DFH, Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Dectination register page selection bits:  
0 0 0 0 Destination: page 0  
Source register page selection bits:  
0 0 0 0 Source: page 0  
NOTE:  
In the S3C80C5/C80C8 microcontroller, only pate 0 is implemented.  
A hardware reset operation writes the 4-bit destination and source values  
shown above to the register pate pointer. These values should not be  
modified.  
Figure 2-3. Register Page Pointer (PP)  
2-5  
ADDRESS SPACES  
S3P80C5/C80C5/C80C8  
REGISTER SET 1  
The term set 1 refers to the upper 64 bytes of the register file, locations C0H–FFH.  
In some S3C8-series microcontrollers, the upper 32-byte area of this 64-byte space (E0H–FFH) is divided into  
two 32-byte register banks, bank 0 and bank 1. The set register bank instructions SB0 or SB1 are used to  
address one bank or the other. In the S3P80C5/C80C5/C80C8 microcontroller, bank 1 is not implemented. A  
hardware reset operation therefore always selects bank 0 addressing, and the SB0 and SB1 instructions are not  
necessary.  
The upper 32-byte area of set 1 (FFH–E0H) contains 26 mapped system and peripheral control registers. The  
lower 32-byte area contains 16 system registers (DFH–D0H) and a 16-byte common working register area (CFH–  
C0H). You can use the common working register area as a "scratch" area for data operations being performed in  
other areas of the register file.  
Registers in set 1 locations are directly accessible at all times using the Register addressing mode. The 16-byte  
working register area can only be accessed using working register addressing. (For more information about  
working register addressing, please refer to Section 3, "Addressing Modes," .)  
REGISTER SET 2  
The same 64-byte physical space that is used for set 1 locations C0H–FFH is logically duplicated to add another  
64 bytes of register space. This expanded area of the register file is called set 2. All set 2 locations (C0H–FFH)  
are addressed as part of page 0 in the S3P80C5/C80C5/C80C8 register space.  
The logical division of set 1 and set 2 is maintained by means of addressing mode restrictions: You can use only  
Register addressing mode to access set 1 locations; to access registers in set 2, you must use Register Indirect  
addressing mode or Indexed addressing mode.  
The set 2 register area is commonly used for stack operations.  
2-6  
S3P80C5/C80C5/C80C8  
ADDRESS SPACES  
PRIME REGISTER SPACE  
The lower 192 bytes of the 256-byte physical internal register file (00H–BFH) is called the prime register space  
or, more simply, the prime area. You can access registers in this address using any addressing mode. (In other  
words, there is no addressing mode restriction for these registers, as is the case for set 1 and set 2 registers.) All  
registers in prime area locations are addressable immediately following a reset.  
Set 1  
FFH  
FCH  
FFH  
C0H  
Set 2  
E0H  
D0H  
C0H  
CPU and system registers  
General-purpose registers  
Peripheral control registers  
Prime  
Register  
Space  
00H  
Figure 2-4. Set 1, Set 2 and Prime Area Register Map  
2-7  
ADDRESS SPACES  
S3P80C5/C80C5/C80C8  
WORKING REGISTERS  
Instructions can access specific 8-bit registers or 16-bit register pairs using either 4-bit or 8-bit address fields.  
When 4-bit working register addressing is used, the 256-byte register file can be seen by the programmer as  
consisting of 32 8-byte register groups or "slices." Each slice consists of eight 8-bit registers.  
Using the two 8-bit register pointers, RP1 and RP0, two working register slices can be selected at any one time to  
form a 16-byte working register block. Using the register pointers, you can move this 16-byte register block  
anywhere in the addressable register file, except for the set 2 area.  
The terms slice and block are used in this manual to help you visualize the size and relative locations of selected  
working register spaces:  
— One working register slice is 8 bytes (eight 8-bit working registers; R0–R7 or R8–R15)  
— One working register block is 16 bytes (sixteen 8-bit working registers; R0–R15)  
All of the registers in an 8-byte working register slice have the same binary value for their five most significant  
address bits. This makes it possible for each register pointer to point to one of the 24 slices in the register file.  
The base addresses for the two selected 8-byte register slices are contained in register pointers RP0 and RP1.  
After a reset, RP0 and RP1 always point to the 16-byte common area in set 1 (C0H–CFH).  
FFH  
Slice 32  
F8H  
F7H  
F0H  
Slice 31  
1 1 1 1 1 X X X  
Set 1  
Only  
RP1 (Registers R8-R15)  
Each register pointer points to  
one 8-byte slice of the register  
space, selecting a total 16-byte  
working register block.  
CFH  
C0H  
~
~
0 0 0 0 0 X X X  
10H  
FH  
8H  
7H  
0H  
RP0 (Registers R0-R7)  
Slice 2  
Slice 1  
Figure 2-5. 8-Byte Working Register Areas (Slices)  
2-8  
S3P80C5/C80C5/C80C8  
ADDRESS SPACES  
USING THE REGISTER POINTERS  
Register pointers RP0 and RP1, mapped to addresses D6H and D7H in set 1, are used to select two movable  
8-byte working register slices in the register file. After a reset, they point to the working register common area:  
RP0 points to addresses C0H–C7H, and RP1 points to addresses C8H–CFH.  
To change a register pointer value, you load a new value to RP0 and/or RP1 using an SRP or LD instruction (see  
Figures 2-6 and 2-7).  
With working register addressing, you can only access those two 8-bit slices of the register file that are currently  
pointed to by RP0 and RP1. You cannot, however, use the register pointers to select a working register space in  
set 2, C0H–FFH, because these locations can be accessed only using the Indirect Register or Indexed  
addressing modes.  
The selected 16-byte working register block usually consists of two contiguous 8-byte slices. As a general  
programming guideline, we recommend that RP0 point to the "lower" slice and RP1 point to the "upper" slice (see  
Figure 2-6). In some cases, it may be necessary to define working register areas in different (non-contiguous)  
areas of the register file. In Figure 2-7, RP0 points to the "upper" slice and RP1 to the "lower" slice.  
Because a register pointer can point to the either of the two 8-byte slices in the working register block, you can  
define the working register area very flexibly to support program requirements.  
F
PROGRAMMING TIP — Setting the Register Pointers  
SRP  
SRP1  
SRP0  
CLR  
LD  
#70H  
#48H  
#0A0H  
RP0  
RP1,#0F8H  
; RP0 ® 70H, RP1 ® 78H  
; RP0 ® no change, RP1 ® 48H,  
; RP0 ® A0H, RP1 ® no change  
; RP0 ® 00H, RP1 ® no change  
; RP0 ® no change, RP1 ® 0F8H  
Register File  
Contains 32  
8-Byte Slices  
0 0 0 0 1 X X X  
RP1  
FH (R15)  
16-Byte  
Contiguous  
Working  
8-Byte Slice  
8-Byte Slice  
8H  
7H  
0 0 0 0 0 X X X  
RP0  
Register block  
0H (R0)  
Figure 2-6. Contiguous 16-Byte Working Register Block  
2-9  
ADDRESS SPACES  
S3P80C5/C80C5/C80C8  
F7H (R7)  
F0H (R0)  
8-Byte Slice  
16-Byte  
Contiguous  
working  
Register File  
Contains 32  
8-Byte Slices  
1 1 1 1 0 X X X  
Register block  
RP0  
0 0 0 0 0 X X X  
RP1  
7H (R15)  
0H (R0)  
8-Byte Slice  
Figure 2-7. Non-Contiguous 16-Byte Working Register Block  
F
PROGRAMMING TIP — Using the RPs to Calculate the Sum of a Series of Registers  
Calculate the sum of registers 80H–85H using the register pointer. The register addresses 80H through 85H  
contains the values 10H, 11H, 12H, 13H, 14H, and 15 H, respectively:  
SRP0  
ADD  
ADC  
ADC  
ADC  
ADC  
#80H  
; RP0 ® 80H  
R0,R1  
R0,R2  
R0,R3  
R0,R4  
R0,R5  
; R0 ® R0 + R1  
; R0 ® R0 + R2 + C  
; R0 ® R0 + R3 + C  
; R0 ® R0 + R4 + C  
; R0 ® R0 + R5 + C  
The sum of these six registers, 6FH, is located in the register R0 (80H). The instruction string used in this  
example takes 12 bytes of instruction code and its execution time is 36 cycles. If the register pointer is not used  
to calculate the sum of these registers, the following instruction sequence would have to be used:  
ADD  
ADC  
ADC  
ADC  
ADC  
80H,81H  
80H,82H  
80H,83H  
80H,84H  
80H,85H  
; 80H ® (80H) + (81H)  
; 80H ® (80H) + (82H) + C  
; 80H ® (80H) + (83H) + C  
; 80H ® (80H) + (84H) + C  
; 80H ® (80H) + (85H) + C  
Now, the sum of the six registers is also located in register 80H. However, this instruction string takes 15 bytes of  
instruction code instead of 12 bytes, and its execution time is 50 cycles instead of 36 cycles.  
2-10  
S3P80C5/C80C5/C80C8  
ADDRESS SPACES  
REGISTER ADDRESSING  
The S3C8-series register architecture provides an efficient method of working register addressing that takes full  
advantage of shorter instruction formats to reduce execution time.  
With Register (R) addressing mode, in which the operand value is the content of a specific register or register  
pair, you can access all locations in the register file except for set 2. With working register addressing, you use a  
register pointer to specify an 8-byte working register space in the register file and an 8-bit register within that  
space.  
Registers are addressed either as a single 8-bit register or as a paired 16-bit register space. In a 16-bit register  
pair, the address of the first 8-bit register is always an even number and the address of the next register is always  
an odd number. The most significant byte of the 16-bit data is always stored in the even-numbered register; the  
least significant byte is always stored in the next (+ 1) odd-numbered register.  
Working register addressing differs from Register addressing because it uses a register pointer to identify a  
specific 8-byte working register space in the internal register file and a specific 8-bit register within that space.  
MSB  
Rn  
LSB  
n = Even address  
Rn+1  
Figure 2-8. 16-Bit Register Pair  
2-11  
ADDRESS SPACES  
S3P80C5/C80C5/C80C8  
Special-Purpose Registers  
General-Purpose Register  
Set 1  
FFH  
FFH  
Control  
Registers  
Set 2  
System  
Registers  
D0H  
CFH  
C0H  
C0H  
BFH  
RP1  
RP0  
D7H  
D6H  
Register  
Pointers  
Each register pointer (RP) can independently point  
to one of the 24 8-byte "slices" of the register file  
(other than set 2). After a reset, RP0 points to  
locations C0H-C7H and RP1 to locations C8H-CFH  
(that is, to the common working register area).  
Prime  
Registers  
NOTE:  
Only page 0 is implemented. Page 0  
Contains all of the addressable registers  
in the internal register file.  
00H  
Page 0  
Page 0  
Register Addressing Only  
All  
Indirect  
Register,  
Indexed  
Addressing  
Modes  
Addressing  
Modes  
Can be Pointed by Register Pointer  
Figure 2-9. Register File Addressing  
2-12  
S3P80C5/C80C5/C80C8  
ADDRESS SPACES  
COMMON WORKING REGISTER AREA (C0H–CFH)  
After a reset, register pointers RP0 and RP1 automatically select two 8-byte register slices in set 1, locations  
C0H–CFH, as the active 16-byte working register block:  
RP0 ® C0H–C7H  
RP1 ® C8H–CFH  
This 16-byte address range is called common area. That is, locations in this area can be used as working  
registers by operations that address any location on any page in the register file. Typically, these working  
registers serve as temporary buffers for data operations between different pages.  
Page 0  
Set 1  
FFH  
FCH  
FFH  
E0H  
DFH  
Set 2  
CFH  
C0H  
C0H  
BFH  
Register a hardware reset, register  
pointers RP0 and RP1 point to the  
commom working register area,  
locations C0H-CfH.  
Prime  
Area  
~
~
RP0 =  
RP1 =  
1 1 0 0  
1 1 0 0  
0 0 0 0  
1 0 0 0  
00H  
Figure 2-10. Common Working Register Area  
2-13  
ADDRESS SPACES  
S3P80C5/C80C5/C80C8  
F
PROGRAMMING TIP — Addressing the Common Working Register Area  
As the following examples show, you should access working registers in the common area, locations C0H–CFH,  
using working register addressing mode only.  
Example 1:  
LD  
0C2H,40H  
; Invalid addressing mode!  
Use working register addressing instead:  
SRP  
LD  
#0C0H  
R2,40H  
; R2 (C2H) ¬ the value in location 40H  
Example 2:  
ADD  
0C3H,#45H  
; Invalid addressing mode!  
Use working register addressing instead:  
SRP  
ADD  
#0C0H  
R3,#45H  
; R3 (C3H) ¬ R3 + 45H  
4-BIT WORKING REGISTER ADDRESSING  
Each register pointer defines a movable 8-byte slice of working register space. The address information stored in  
a register pointer serves as an addressing "window" that makes it possible for instructions to access working  
registers very efficiently using short 4-bit addresses. When an instruction addresses a location in the selected  
working register area, the address bits are concatenated in the following way to form a complete 8-bit address:  
— The high-order bit of the 4-bit address selects one of the register pointers ("0" selects RP0; "1" selects RP1);  
— The five high-order bits in the register pointer select an 8-byte slice of the register space;  
— The three low-order bits of the 4-bit address select one of the eight registers in the slice.  
As shown in Figure 2-11, the result of this operation is that the five high-order bits from the register pointer are  
concatenated with the three low-order bits from the instruction address to form the complete address. As long as  
the address stored in the register pointer remains unchanged, the three bits from the address will always point to  
an address in the same 8-byte register slice.  
Figure 2-12 shows a typical example of 4-bit working register addressing: The high-order bit of the instruction  
'INC R6' is "0", which selects RP0. The five high-order bits stored in RP0 (01110B) are concatenated with the  
three low-order bits of the instruction's 4-bit address (110B) to produce the register address 76H (01110110B).  
2-14  
S3P80C5/C80C5/C80C8  
ADDRESS SPACES  
RP0  
RP1  
Selects  
RP0 or RP1  
Address  
OPCODE  
4-bit Address  
Provides Three  
Low-order Bits  
Register Pointer  
Provides Five  
High-order Bits  
Together They Create an  
8-bit Register Address  
Figure 2-11. 4-Bit Working Register Addressing  
RP0  
0 1 1 1 0  
RP1  
0 1 1 1 1  
0 0 0  
0 0 0  
Selects RP0  
R6  
OPCODE  
1 1 1 0  
Register  
Address  
(76H)  
Instruction:  
'INC R6'  
0 1 1 1 0  
1 1 0  
0 1 1 0  
Figure 2-12. 4-Bit Working Register Addressing Example  
2-15  
ADDRESS SPACES  
S3P80C5/C80C5/C80C8  
8-BIT WORKING REGISTER ADDRESSING  
You can also use 8-bit working register addressing to access registers in a selected working register area. To  
initiate 8-bit working register addressing, the upper four bits of the instruction address must contain the value  
1100B. This 4-bit value (1100B) indicates that the remaining four bits have the same effect as 4-bit working  
register addressing.  
As shown in Figure 2-13, the lower nibble of the 8-bit address is concatenated in much the same way as for 4-bit  
addressing: Bit 3 selects either RP0 or RP1, which then supplies the five high-order bits of the final address; the  
three low-order bits of the complete address are provided by the original instruction.  
Figure 2-14 shows an example of 8-bit working register addressing: The four high-order bits of the instruction  
address (1100B) specify 8-bit working register addressing. Bit 4 ("1") selects RP1 and the five high-order bits in  
RP1 (10101B) become the five high-order bits of the register address. The three low-order bits of the register  
address (011) are provided by the three low-order bits of the 8-bit instruction address. The five address bits from  
RP1 and the three address bits from the instruction are concatenated to form the complete register address,  
0ABH (10101011B).  
RP0  
RP1  
Selects  
RP0 or RP1  
Address  
These Address  
Bits Indicate 8-bit  
Working Register  
Addressing  
8-bit Logical  
Address  
1
1
0
0
Register Pointer  
Provides Five  
High-order Bits  
Three low-  
order Bits  
8-bit Physical Address  
Figure 2-13. 8-Bit Working Register Addressing  
2-16  
S3P80C5/C80C5/C80C8  
ADDRESS SPACES  
RP0  
0 1 1 0 0  
RP1  
1 0 1 0 1  
0 0 0  
0 0 0  
Selects RP1  
R11  
8-bit Address  
Form Instruction  
'LD R11, R2'  
1 1 0 0  
1
0 1 1  
Specifies Working  
Register Addressing  
Register Address (0ABH)  
1 0 1 0 1  
0 1 1  
Figure 2-14. 8-Bit Working Register Addressing Example  
2-17  
ADDRESS SPACES  
S3P80C5/C80C5/C80C8  
SYSTEM AND USER STACKS  
S3C8-series microcontrollers use the system stack for subroutine calls and returns and to store data. The PUSH  
and POP instructions are used to control system stack operations.  
The S3P80C5/C80C5/C80C8 architecture supports stack operations in the internal register file.  
Stack Operations  
Return addresses for procedure calls and interrupts and data are stored on the stack. The contents of the PC are  
saved to stack by a CALL instruction and restored by the RET instruction. When an interrupt occurs, the contents  
of the PC and the FLAGS register are pushed to the stack. The IRET instruction then pops these values back to  
their original locations. The stack address value is always decreased by one before a push operation and  
increased by one after a pop operation. The stack pointer (SP) always points to the stack frame stored on the top  
of the stack, as shown in Figure 2-15.  
High Address  
PCL  
PCL  
PCH  
Top of  
PCH  
Top of  
Stack  
Stack  
FLAGS  
Stack Contents  
After a Call  
Instruction  
Stack Contents  
After an Interrupt  
Low Address  
Figure 2-15. Stack Operations  
User-Defined Stacks  
You can freely define stacks in the internal register file as data storage locations. The instructions PUSHUI,  
PUSHUD, POPUI, and POPUD support user-defined stack operations.  
Stack Pointers (SPL)  
Register location D9H contain the 8-bit stack pointer (SPL) that is used for system stack operations. After a reset,  
the SPL value is undetermined. Because only internal memory 256-byte is implemented in  
S3P80C5/C80C5/C80C8, the SPL must be initialized to an 8-bit value in the range 00H–FFH.  
2-18  
S3P80C5/C80C5/C80C8  
ADDRESS SPACES  
F
PROGRAMMING TIP — Standard Stack Operations Using PUSH and POP  
The following example shows you how to perform stack operations in the internal register file using PUSH and  
POP instructions:  
LD  
SPL,#0FFH  
; SPL ¬ FFH  
; (Normally, the SPL is set to 0FFH by the initialization  
; routine)  
PUSH  
PUSH  
PUSH  
PUSH  
PP  
; Stack address 0FEH ¬ PP  
; Stack address 0FDH ¬ RP0  
; Stack address 0FCH ¬ RP1  
; Stack address 0FBH ¬ R3  
RP0  
RP1  
R3  
POP  
POP  
POP  
POP  
R3  
; R3 ¬ Stack address 0FBH  
; RP1 ¬ Stack address 0FCH  
; RP0 ¬ Stack address 0FDH  
; PP ¬ Stack address 0FEH  
RP1  
RP0  
PP  
2-19  
ADDRESS SPACES  
S3P80C5/C80C5/C80C8  
NOTES  
2-20  
S3P80C5/C80C5/C80C8  
ADDRESSING MODES  
3
ADDRESSING MODES  
OVERVIEW  
The program counter is used to fetch instructions that are stored in program memory for execution. Instructions  
indicate the operation to be performed and the data to be operated on. Addressing mode is the method used to  
determine the location of the data operand. The operands specified in instructions may be condition codes,  
immediate data, or a location in the register file, program memory, or data memory.  
The S3C8-series instruction set supports seven explicit addressing modes. Not all of these addressing modes are  
available for each instruction:  
— Register (R)  
— Indirect Register (IR)  
— Indexed (X)  
— Direct Address (DA)  
— Indirect Address (IA)  
— Relative Address (RA)  
— Immediate (IM)  
3-1  
ADDRESSING MODES  
S3P80C5/C80C5/C80C8  
REGISTER ADDRESSING MODE (R)  
In Register addressing mode, the operand is the content of a specified register or register pair (see Figure 3-1).  
Working register addressing differs from Register addressing because it uses a register pointer to specify an 8-  
byte working register space in the register file and an 8-bit register within that space (see Figure 3-2).  
Program Memory  
Register File  
OPERAND  
8-bit Register  
File Address  
dst  
Point to One  
Register in Register  
File  
OPCODE  
One-Operand  
Instruction  
(Example)  
Value used in  
Instruction Execution  
Sample Instruction:  
DEC  
CNTR  
;
Where CNTR is the label of an 8-bit register address  
Figure 3-1. Register Addressing  
Register File  
MSB Points to  
RP0 ot RP1  
RP0 or RP1  
Selected  
RP Points  
to Start  
Program Memory  
of Working  
Register  
Block  
4-bit  
Working Register  
3 LSBs  
dst  
src  
OPERAND  
Points to the  
Working Register  
(1 of 8)  
OPCODE  
Two-Operand  
Instruction  
(Example)  
Sample Instruction:  
ADD R1, R2  
;
Where R1 and R2 are registers in the currently  
selected working register area.  
Figure 3-2. Working Register Addressing  
3-2  
S3P80C5/C80C5/C80C8  
ADDRESSING MODES  
INDIRECT REGISTER ADDRESSING MODE (IR)  
In Indirect Register (IR) addressing mode, the content of the specified register or register pair is the address of  
the operand. Depending on the instruction used, the actual address may point to a register in the register file, to  
program memory (ROM), or to an external memory space, if implemented (see Figures 3-3 through 3-6).  
You can use any 8-bit register to indirectly address another register. Any 16-bit register pair can be used to  
indirectly address another memory location. Remember, however, that locations C0H–FFH in set 1 cannot be  
accessed using Indirect Register addressing mode.  
Program Memory  
Register File  
ADDRESS  
8-bit Register  
File Address  
dst  
Point to One  
Register in  
OPCODE  
One-Operand  
Instruction  
(Example)  
Register File  
Address of Operand  
used by Instruction  
OPERAND  
Value used in  
Instruction Execution  
Sample Instruction:  
RL  
@SHIFT ; Where SHIFT is the label of an 8-bit register address.  
Figure 3-3. Indirect Register Addressing to Register File  
3-3  
ADDRESSING MODES  
S3P80C5/C80C5/C80C8  
INDIRECT REGISTER ADDRESSING MODE (Continued)  
Register File  
Program Memory  
Example  
Register Pair  
dst  
Instruction  
References  
Program  
Points to  
Register Pair  
OPCODE  
16-Bit  
Memory  
Address  
Points to  
Program  
Memory  
Program Memory  
OPERAND  
Sample Instructions:  
Value used in  
Instruction  
CALL  
JP  
@RR2  
@RR2  
Figure 3-4. Indirect Register Addressing to Program Memory  
3-4  
S3P80C5/C80C5/C80C8  
ADDRESSING MODES  
INDIRECT REGISTER ADDRESSING MODE (Continued)  
Register File  
RP0 or RP1  
MSB Points to  
RP0 or RP1  
Selected  
RP Points  
to Start of  
Woking  
Register  
Block  
~
~
~
~
Program Memory  
4-bit  
3 LSBs  
Working  
Register  
Address  
ADDRESS  
dst  
src  
Point to the  
Working Register  
(1 of 8)  
OPCODE  
Sample Instruction:  
OR R3, @R6  
Value used in  
Instruction  
OPERAND  
Figure 3-5. Indirect Working Register Addressing to Register File  
3-5  
ADDRESSING MODES  
S3P80C5/C80C5/C80C8  
INDIRECT REGISTER ADDRESSING MODE (Continued)  
Register File  
RP0 or RP1  
MSB Points to  
RP0 or RP1  
Selected  
RP Points  
to Start of  
Working  
Register  
Block  
Program Memory  
4-bit Working  
Register Address  
dst  
src  
Register  
Pair  
Next 2-bit Point  
to Working  
Register Pair  
(1 of 4)  
OPCODE  
Example Instruction  
References either  
Program Memory or  
Data Memory  
16-Bit  
Address  
Points to  
Program  
Memory or  
Data  
Program Memory  
or  
Data Memory  
LSB Selects  
Memory  
Value used in  
Instruction  
OPERAND  
Sample Instructions:  
LDC  
LDE  
LDE  
R5,@RR6  
R3,@RR14  
@RR4, R8  
; Program memory access  
; External data memory access  
; External data memory access  
NOTE:  
LDE command is not available, because an external interface is not implemented for  
the S3C80C5/C80C8/C80C4.  
Figure 3-6. Indirect Working Register Addressing to Program or Data Memory  
3-6  
S3P80C5/C80C5/C80C8  
ADDRESSING MODES  
INDEXED ADDRESSING MODE (X)  
Indexed (X) addressing mode adds an offset value to a base address during instruction execution in order to  
calculate the effective operand address (see Figure 3-7). You can use Indexed addressing mode to access  
locations in the internal register file or in external memory (if implemented). You cannot, however, access  
locations C0H–FFH in set 1 using Indexed addressing.  
In short offset Indexed addressing mode, the 8-bit displacement is treated as a signed integer in the range –128  
to +127. This applies to external memory accesses only (see Figure 3-8).  
For register file addressing, an 8-bit base address provided by the instruction is added to an 8-bit offset contained  
in a working register. For external memory accesses, the base address is stored in the working register pair  
designated in the instruction. The 8-bit or 16-bit offset given in the instruction is then added to the base address  
(see Figure 3-9).  
The only instruction that supports Indexed addressing mode for the internal register file is the Load instruction  
(LD). The LDC and LDE instructions support Indexed addressing mode for internal program memory and for  
external data memory (if implemented).  
Register File  
MSB Points to  
RP0 or RP1  
RP0 or RP1  
~
~
~
~
Selected RP  
Points to  
Start of  
Working  
Register  
Block  
Value used in  
Instruction  
OPERAND  
+
Program Memory  
Base Address  
3 LSBs  
Two-Operand  
Instruction  
Example  
dst/src  
x
INDEX  
Point to One of the  
Working Register  
(1 of 8)  
OPCODE  
Sample Instruction:  
LD R0, #BASE[R1]  
;
Where BASE is an 8-bit immediate value  
Figure 3-7. Indexed Addressing to Register File  
3-7  
ADDRESSING MODES  
S3P80C5/C80C5/C80C8  
INDEXED ADDRESSING MODE (Continued)  
Register File  
RP0 or RP1  
MSB Points to  
RP0 or RP1  
Selected  
RP Points  
to Start of  
Working  
Register  
Block  
~
~
Program Memory  
OFFSET  
Next 2 Bits  
4 Bit Working  
Register Address  
dst/src  
OPCODE  
x
Register  
Pair  
Point to Working  
Register Pair  
(1 of 4)  
16-Bit  
Address  
Added to  
Offset  
LSB Selects  
Program Memory  
or  
Data Memory  
+
16 Bits  
8 Bits  
Value used In  
Instruction  
OPERAND  
16 Bits  
Sample Instructions:  
LDC  
LDE  
R4, #04H[RR2]  
R4,#04H[RR2]  
; The values in the program address (RR2 + 04H) are  
loaded into register R4.  
; Identical operation to LDC example, except that  
external program memory is accessed.  
NOTE:  
LDE command is not available, because an external interface is not implemented for  
the S3C80C5/C80C8/C80C4.  
Figure 3-8. Indexed Addressing to Program or Data Memory with Short Offset  
3-8  
S3P80C5/C80C5/C80C8  
ADDRESSING MODES  
INDEXED ADDRESSING MODE (Continued)  
Register File  
RP0 or RP1  
MSB Points to  
RP0 or RP1  
Selected  
RP Points  
to Start of  
Working  
Register  
Block  
Program Memory  
OFFSET  
~
~
OFFSET  
Next 2 Bits  
4 Bit Working  
Register Address  
dst/src  
x
Register  
Pair  
Point to Working  
Register Pair  
OPCODE  
16 Bit  
Address  
Added to  
Offset  
LSB Selects  
Program Memory  
or  
Data Memory  
+
16-Bits  
8-Bits  
Value used in  
Instruction  
OPERAND  
16-Bits  
Sample Instructions:  
LDC  
LDE  
R4, #1000H[RR2] ; The values in the program address (RR2 + 1000H)  
are loaded into register R4.  
R4, #1000H[RR2] ; Identical operation to LDC example, except that  
external program memory is accessed.  
NOTE:  
LDE command is not available, because an external interface is not implemented for  
the S3C80C5/C80C8/C80C4.  
Figure 3-9. Indexed Addressing to Program or Data Memory  
3-9  
ADDRESSING MODES  
S3P80C5/C80C5/C80C8  
DIRECT ADDRESS MODE (DA)  
In Direct Address (DA) mode, the instruction provides the operand's 16-bit memory address. Jump (JP) and Call  
(CALL) instructions use this addressing mode to specify the 16-bit destination address that is loaded into the PC  
whenever a JP or CALL instruction is executed.  
The LDC and LDE instructions can use Direct Address mode to specify the source or destination address for  
Load operations to program memory (LDC) or to external data memory (LDE), if implemented.  
Program or  
Data Memory  
Memory  
Address  
Used  
Program Memory  
Upper Address Byte  
Lower Address Byte  
dst/src "0" or "1"  
OPCODE  
LSB Selects Program  
Memory or Data Memory:  
"0" = Program Memory  
"1" = Data Memory  
Sample Instructions:  
LDC  
LDE  
R5,1234H ; The values in the program address (1234H)  
are loaded into register R5.  
R5,1234H ; Identical operation to LDC example, except that  
external program memory is accessed.  
NOTE:  
LDE command is not available, because an external interface  
is not implemented for the S3C80C5/C80C8/C804C.  
Figure 3-10. Direct Addressing for Load Instructions  
3-10  
S3P80C5/C80C5/C80C8  
ADDRESSING MODES  
DIRECT ADDRESS MODE (Continued)  
Program Memory  
Next OPCODE  
Program Memory  
Address Used  
Lower Address Byte  
Upper Address Byte  
OPCODE  
Sample Instructions:  
JP  
C,JOB1  
;
Where JOB1 is a 16 bit immediate address  
CALL  
DISPLAY ; Where DISPLAY is a 16 bit immediate address  
Figure 3-11. Direct Addressing for Call and Jump Instructions  
3-11  
ADDRESSING MODES  
S3P80C5/C80C5/C80C8  
INDIRECT ADDRESS MODE (IA)  
In Indirect Address (IA) mode, the instruction specifies an address located in the lowest 256 bytes of the program  
memory. The selected pair of memory locations contains the actual address of the next instruction to be  
executed. Only the CALL instruction can use the Indirect Address mode.  
Because the Indirect Address mode assumes that the operand is located in the lowest 256 bytes of program  
memory, only an 8-bit address is supplied in the instruction; the upper bytes of the destination address are  
assumed to be all zeros.  
Program Memory  
Next Instruction  
LSB Must be Zero  
dst  
Current  
OPCODE  
Instruction  
Lower Address Byte  
Upper Address Byte  
Program Memory  
Locations 0-255  
Sample Instruction:  
CALL #40H  
; The 16 bit value in program memory addresses 40H  
and 41H is the subroutine start address.  
Figure 3-12. Indirect Addressing  
3-12  
S3P80C5/C80C5/C80C8  
ADDRESSING MODES  
RELATIVE ADDRESS MODE (RA)  
In Relative Address (RA) mode, a two's-complement signed displacement between – 128 and + 127 is specified  
in the instruction. The displacement value is then added to the current PC value. The result is the address of the  
next instruction to be executed. Before this addition occurs, the PC contains the address of the instruction  
immediately following the current instruction.  
Several program control instructions use the Relative Address mode to perform conditional jumps. The  
instructions that support RA addressing are BTJRF, BTJRT, DJNZ, CPIJE, CPIJNE, and JR.  
Program Memory  
Next OPCODE  
Program Memory  
Address Used  
Current  
PC Value  
+
Displacement  
OPCODE  
Current Instruction  
Signed Displacement  
Value  
Sample Instructions:  
JR  
ULT,$+OFFSET  
;
Where OFFSET is a value in the range +127 to -128  
Figure 3-13. Relative Addressing  
3-13  
ADDRESSING MODES  
S3P80C5/C80C5/C80C8  
IMMEDIATE MODE (IM)  
In Immediate (IM) mode, the operand value used in the instruction is the value supplied in the operand field itself.  
The operand may be one byte or one word in length, depending on the instruction used. Immediate addressing  
mode is useful for loading constant values into registers.  
Program Memory  
OPERAND  
OPCODE  
(The Operand value is in the instruction)  
Sample Instruction:  
LD  
R0,#0AAH  
Figure 3-14. Immediate Addressing  
3-14  
S3P80C5/C80C5/C80C8  
CONTROL REGISTERS  
4
CONTROL REGISTERS  
OVERVIEW  
In this section, detailed descriptions of the S3P80C5/C80C5/C80C8 control registers are presented in an easy-to-  
read format. You can use this section as a quick-reference source when writing application programs. Figure 4-1  
illustrates the important features of the standard register description format.  
Control register descriptions are arranged in alphabetical order according to register mnemonic. More detailed  
information about control registers is presented in the context of the specific peripheral hardware descriptions in  
Part II of this manual.  
Data and counter registers are not described in detail in this reference section. More information about all of the  
registers used by a specific peripheral is presented in the corresponding peripheral descriptions in Part II of this  
manual.  
4-1  
CONTROL REGISTERS  
S3P80C5/C80C5/C80C8  
Table 4-1. Mapped Registers (Set 1)  
Register Name  
Mnemonic  
T0CNT  
T0DATA  
T0CON  
BTCON  
CLKCON  
FLAGS  
RP0  
Decimal  
208  
Hex  
R/W  
R(note)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Timer 0 counter  
D0H  
D1H  
D2H  
D3H  
D4H  
D5H  
D6H  
D7H  
Timer 0 data register  
Timer 0 control register  
Basic timer control register  
Clock control register  
System flags register  
Register pointer 0  
209  
210  
211  
212  
213  
214  
Register pointer 1  
RP1  
215  
Locations D8H is not mapped.  
Stack pointer (low byte)  
Instruction pointer (high byte)  
Instruction pointer (low byte)  
Interrupt request register  
Interrupt mask register  
System mode register  
Register page pointer  
Port 0 data register  
SPL  
IPH  
IPL  
IRQ  
IMR  
SYM  
PP  
217  
D9H  
DAH  
DBH  
DCH  
DDH  
DEH  
DFH  
E0H  
E1H  
E2H  
R/W  
R/W  
R/W  
R (note)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
218  
219  
220  
221  
222  
223  
224  
225  
226  
P0  
Port 1 data register  
P1  
Port 2 data register  
P2  
Location E3H–E6H is not mapped.  
Port 0 pull-up resistor enable register  
Port 0 control register (high byte)  
Port 0 control register (low byte)  
Port 1 control register (high byte)  
Port 1 control register (low byte)  
Port 1 pull-up resistor enable register  
P0PUR  
P0CONH  
P0CONL  
P1CONH  
P1CONL  
P1PUR  
231  
E7H  
E8H  
E9H  
EAH  
EBH  
ECH  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
232  
233  
234  
235  
236  
Location EDH–EFH is not mapped.  
Port 2 control register  
P2CON  
P0INT  
239  
241  
242  
243  
244  
245  
246  
247  
248  
F0H  
F1H  
F2H  
F3H  
F4H  
F5H  
F6H  
F7H  
F8H  
R/W  
R/W  
Port 0 interrupt enable register  
Port 0 interrupt pending register  
Counter A control register  
P0PND  
R/W  
CACON  
CADATAH  
CADATAL  
T1CNTH  
T1CNTL  
T1DATAH  
R/W  
Counter A data register (high byte)  
Counter A data register (low byte)  
Timer 1 counter register (high byte)  
Timer 1 counter register (low byte)  
Timer 1 data register (high byte)  
R/W  
R/W  
R (note)  
R (note)  
R/W  
4-2  
S3P80C5/C80C5/C80C8  
CONTROL REGISTERS  
Table 4-1. Mapped Registers (Continued)  
Register Name  
Mnemonic  
T1DATAL  
T1CON  
Decimal  
249  
Hex  
R/W  
R/W  
R/W  
W
Timer 1 data register (low byte)  
Timer 1 control register  
STOP Control register  
F9H  
FAH  
FBH  
250  
STOPCON  
251  
Locations FCH is not mapped.  
R (note)  
R/W  
Basic timer counter  
BTCNT  
EMT  
253  
FDH  
FEH  
FFH  
External memory timing register  
Interrupt priority register  
254  
255  
IPR  
R/W  
NOTE: You cannot use a read-only register as a destination for the instructions OR, AND, LD, or LDB.  
4-3  
CONTROL REGISTERS  
S3P80C5/C80C5/C80C8  
Bit number(s) that is/are appended to  
the register name for bit addressing  
Name of individual  
bit or related bits  
Register location  
in the internal  
register file  
Register address  
(hexadecimal)  
Register ID  
Register name  
FLAGS- System Flags Register  
D5H  
Set 1  
Bit Identifier  
RESET Value  
Read/Write  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
.1  
.0  
0
x
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Bit Addressing Mode Register addressing mode only  
.7  
Carry Flag (C)  
Operation does not generate a carry or borrow condition  
Operation generates carry-out or borrow into high-order bit 7  
0
0
.6  
.5  
Zero Flag (Z)  
Operation result is a non-zero value  
Operation result is zero  
0
0
Sign Flag (S)  
Operation generates positive number (MSB = "0")  
0
0
Operation generates negative number (MSB = "1")  
R = Read-only  
W = Write-only  
R/W = Read/write  
'-' = Not used  
Description of the  
effect of specific  
bit settings  
Bit number:  
MSB = Bit 7  
LSB = Bit 0  
Addressing mode or  
modes you can use  
to modify register  
values  
RESET value notation:  
'-' = Not used  
'x' = Undetermined value  
'0' = Logic zero  
'1' = Logic one  
Figure 4-1. Register Description Format  
4-4  
S3P80C5/C80C5/C80C8  
CONTROL REGISTERS  
BTCON — Basic Timer Control Register  
D3H  
Set 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Bit Addressing  
Register addressing mode only  
.7–.4  
.3–.2  
Watchdog Timer Function Disable Code (for System Reset)  
1
0
1
0
Disable watchdog timer function  
Enable watchdog timer function  
Any other value  
Basic Timer Input Clock Selection Bits  
fOSC/4096  
0
0
1
1
0
1
0
1
fOSC/1024  
fOSC/128  
Invalid setting; not used for S3P80C5/C80C5/C80C8.  
Basic Timer Counter Clear Bit (1)  
.1  
0
1
No effect  
Clear the basic timer counter value  
Clock Frequency Divider Clear Bit for Basic Timer and Timer 0 (2)  
.0  
0
1
No effect  
Clear both clock frequency dividers  
NOTES:  
1. When you write a "1" to BTCON.1, the basic timer counter value is cleared to '00H'. Immediately following the write  
operation, the BTCON.1 value is automatically cleared to "0".  
2. When you write a "1" to BTCON.0, the corresponding frequency divider is cleared to '00H'. Immediately following the  
write operation, the BTCON.0 value is automatically cleared to "0".  
4-5  
CONTROL REGISTERS  
S3P80C5/C80C5/C80C8  
CACON— Counter A Control Register  
F3H  
Set 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
.1  
0
.0  
0
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
Counter A Input Clock Selection Bits  
fOSC  
0
0
1
1
0
1
0
1
fOSC/2  
fOSC/4  
fOSC/8  
.5–.4  
Counter A Interrupt Timing Selection Bits  
0
0
1
1
0
1
0
1
Elapsed time for Low data value  
Elapsed time for High data value  
Elapsed time for combined Low and High data values  
Invalid setting; not used for S3C80C5/C80C8.  
.3  
.2  
.1  
.0  
Counter A Interrupt Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
Counter A Start Bit  
0
1
Stop counter A  
Start counter A  
Counter A Mode Selection Bit  
0
1
One-shot mode  
Repeating mode  
Counter A Output flip-flop Control Bit  
0
1
Flip-flop Low level (T-FF = Low)  
Flip-flop High level (T-FF = High)  
4-6  
S3P80C5/C80C5/C80C8  
CONTROL REGISTERS  
CLKCON— System Clock Control Register  
D4H  
Set 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.6–.5  
.4–.3  
Oscillator IRQ Wake-up Function Enable Bit  
Not used for S3P80C5/C80C5/C80C8.  
Main Oscillator Stop Control Bits  
Not used for S3P80C5/C80C5/C80C8.  
CPU Clock (System Clock) Selection Bits (1)  
fOSC/16  
0
0
1
1
0
1
0
1
fOSC/8  
fOSC/2  
fOSC (non-divided)  
Subsystem Clock Selection Bit (2)  
.2–.0  
1
0
1
Invalid setting for S3P80C5/C80C5/C80C8.  
Select main system clock (MCLK)  
Other value  
NOTES:  
1. After a reset, the slowest clock (divided by 16) is selected as the system clock. To select faster clock speeds, load the  
appropriate values to CLKCON.3 and CLKCON.4.  
2. These selection bits are required only for systems that have a main clock and a subsystem clock. The  
S3P80C5/C80C5/C80C8 uses only the main oscillator clock circuit. For this reason, the setting '101B' is invalid.  
4-7  
CONTROL REGISTERS  
S3P80C5/C80C5/C80C8  
EMTExternal Memory Timing Register (note)  
FEH  
Set 1  
Bit Identifier  
.7  
0
.6  
1
.5  
1
.4  
1
.3  
1
.2  
1
.1  
0
.0  
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7  
External WAIT Input Function Enable Bit  
0
1
Disable WAIT input function for external device  
Enable WAIT input function for external device  
.6  
Slow Memory Timing Enable Bit  
0
1
Disable WAIT input function for external device  
Enable WAIT input function for external device  
.5–.4  
Program Memory Automatic Wait Control Bits  
0
0
1
1
0
1
0
1
No wait  
Wait one cycle  
Wait two cycles  
Wait three cycles  
.3–.2  
Data Memory Automatic Wait Control Bits  
0
0
1
1
0
1
0
1
No wait  
Wait one cycle  
Wait two cycles  
Wait three cycles  
.1  
.0  
Stack Area Selection Bit  
0
1
Select internal register file area  
Select external data memory area  
Not used for S3P80C5/C80C5/C80C8.  
NOTE: The EMT register is not used for S3P80C5/C80C5/C80C8, because an external peripheral interface is not  
implemented in the S3P80C5/C80C5/C80C8.  
The program initialization routine should clear the EMT register to '00H' following a reset. Modification of EMT  
values during normal operation may cause a system malfunction.  
4-8  
S3P80C5/C80C5/C80C8  
CONTROL REGISTERS  
FLAGS — System Flags Register  
D5H  
Set 1  
Bit Identifier  
.7  
.6  
.5  
x
.4  
x
.3  
x
.2  
.1  
0
.0  
0
x
x
x
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
R/W  
Addressing Mode  
Register addressing mode only  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
Carry Flag (C)  
0
1
Operation does not generate a carry or borrow condition  
Operation generates a carry-out or borrow into high-order bit 7  
Zero Flag (Z)  
0
1
Operation result is a non-zero value  
Operation result is zero  
Sign Flag (S)  
0
1
Operation generates a positive number (MSB = "0")  
Operation generates a negative number (MSB = "1")  
Overflow Flag (V)  
0
1
Operation result is £ +127 or ³ –128  
Operation result is > +127 or < –128  
Decimal Adjust Flag (D)  
0
1
Add operation completed  
Subtraction operation completed  
Half-Carry Flag (H)  
0
1
No carry-out of bit 3 or no borrow into bit 3 by addition or subtraction  
Addition generated carry-out of bit 3 or subtraction generated borrow into bit 3  
Fast Interrupt Status Flag (FIS)  
0
1
Interrupt return (IRET) in progress (when read)  
Fast interrupt service routine in progress (when read)  
Bank Address Selection Flag (BA)  
0
Bank 0 is selected  
(normal setting for S3C80C5/C80C8)  
1
Invalid selection (bank 1 is not implemented)  
4-9  
CONTROL REGISTERS  
S3P80C5/C80C5/C80C8  
IMR— Interrupt Mask Register  
DDH  
Set 1  
Bit Identifier  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
x
.1  
x
.0  
x
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7  
.6  
Interrupt Level 7 (IRQ7) Enable Bit; External Interrupts P0.7–P0.4  
1
Enable (un-mask)  
Interrupt Level 6 (IRQ6) Enable Bit; External Interrupts P0.3–P0.0  
0
1
Disable (mask)  
Enable (un-mask)  
.5  
.4  
Not used for S3P80C5/C80C5/C80C8.  
Interrupt Level 4 (IRQ4) Enable Bit; Counter A Interrupt  
0
1
Disable (mask)  
Enable (un-mask)  
.3–.2  
.1  
Not used for S3P80C5/C80C5/C80C8.  
Interrupt Level 1 (IRQ1) Enable Bit; Timer 1 Match or Overflow  
0
1
Disable (mask)  
Enable (un-mask)  
.0  
Interrupt Level 0 (IRQ0) Enable Bit; Timer 0 Match or Overflow  
0
1
Disable (mask)  
Enable (un-mask)  
NOTES:  
1. When an interrupt level is masked, any interrupt requests that may be issued are not recognized by the CPU.  
2. Interrupt levels IRQ2, IRQ3 and IRQ5 are not used in the S3P80C5/C80C5/C80C8 interrupt structure.  
4-10  
S3P80C5/C80C5/C80C8  
CONTROL REGISTERS  
IPH— Instruction Pointer (High Byte)  
DAH  
Set 1  
Bit Identifier  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
x
.1  
x
.0  
x
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.0  
Instruction Pointer Address (High Byte)  
The high-byte instruction pointer value is the upper eight bits of the 16-bit instruction  
pointer address (IP15–IP8). The lower byte of the IP address is located in the IPL  
register (DBH).  
IPL— Instruction Pointer (Low Byte)  
DBH  
Set 1  
Bit Identifier  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
x
.1  
x
.0  
x
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.0  
Instruction Pointer Address (Low Byte)  
The low-byte instruction pointer value is the lower eight bits of the 16-bit instruction  
pointer address (IP7–IP0). The upper byte of the IP address is located in the IPH  
register (DAH).  
4-11  
CONTROL REGISTERS  
S3P80C5/C80C5/C80C8  
IPR— Interrupt Priority Register  
FFH  
Set 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Bit Addressing  
Register addressing mode only  
.7, .4, and .1  
Priority Control Bits for Interrupt Groups A, B, and C  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Group priority undefined  
B > C > A  
A > B > C  
B > A > C  
C > A > B  
C > B > A  
A > C > B  
Group priority undefined  
.6  
Interrupt Subgroup C Priority Control Bit  
0
1
IRQ6 > IRQ7  
IRQ7 > IRQ6  
.5, .3  
.2  
Not used for S3P80C5/C80C5/C80C8.  
Input Group B Priority Control Bit  
0
1
IRQ4  
IRQ4  
.0  
Interrupt Group A Priority Control Bit  
0
1
IRQ0 > IRQ1  
IRQ1 > IRQ0  
NOTE: The S3P80C5/C80C5/C80C8 interrupt structure uses only five levels:  
IRQ0, IRQ1, IRQ4, IRQ6–IRQ7. Because IRQ2, IRQ3, IRQ5 are not recognized, the interrupt subgroup B and  
group C settings (IPR.2,.3 and IPR.5) are not evaluated.  
4-12  
S3P80C5/C80C5/C80C8  
CONTROL REGISTERS  
IRQ— Interrupt Request Register  
DCH  
Set 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R
R
R
R
R
R
R
R
Addressing Mode  
Register addressing mode only  
.7  
.6  
Level 7 (IRQ7) Request Pending Bit; External Interrupts P0.7–P0.4  
0
1
Not pending  
Pending  
Level 6 (IRQ6) Request Pending Bit; External Interrupts P0.3–P0.0  
0
1
Not pending  
Pending  
.5  
.4  
Not used for S3P80C5/C80C5/C80C8.  
Level 4 (IRQ4) Request Pending Bit; Counter A Interrupt  
0
1
Not pending  
Pending  
.3–.2  
.1  
Not used for S3P80C5/C80C5/C80C8.  
Level 1 (IRQ1) Request Pending Bit; Timer 1 Match or Overflow  
0
1
Not pending  
Pending  
.0  
Level 0 (IRQ0) Request Pending Bit; Timer 0 Match or Overflow  
0
1
Not pending  
Pending  
NOTE: Interrupt level IRQ2, IRQ3 and IRQ5 is not used in the S3P80C5/C80C5/C80C8 interrupt structure.  
4-13  
CONTROL REGISTERS  
S3P80C5/C80C5/C80C8  
P0CONH— Port 0 Control Register (High Byte)  
E8H  
Set 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5–.4  
.3–.2  
P0.7/INT4 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode; interrupt on falling edges  
C-MOS input mode; interrupt on rising and falling edges  
Push-pull output mode  
C-MOS input mode; interrupt on rising edges  
P0.6/INT4 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode; interrupt on falling edges  
C-MOS input mode; interrupt on rising and falling edges  
Push-pull output mode  
C-MOS input mode; interrupt on rising edges  
P0.5/INT4 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode; interrupt on falling edges  
C-MOS input mode; interrupt on rising and falling edges  
Push-pull output mode  
C-MOS input mode; interrupt on rising edges  
.1–.0  
P0.4/INT4 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode; interrupt on falling edges  
C-MOS input mode; interrupt on rising and falling edges  
Push-pull output mode  
C-MOS input mode; interrupt on rising edges  
NOTES:  
1. The INT4 external interrupts at the P0.7–P0.4 pins share the same interrupt level (IRQ7) and interrupt vector  
address (E8H).  
2. You can assign pull-up resistors to individual port 0 pins by making the appropriate settings to the P0PUR register.  
4-14  
S3P80C5/C80C5/C80C8  
CONTROL REGISTERS  
P0CONL— Port 0 Control Register (Low Byte)  
E9H  
Set 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5–.4  
.3–.2  
P0.3/INT3 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode; interrupt on falling edges  
C-MOS input mode; interrupt on rising and falling edges  
Push-pull output mode  
C-MOS input mode; interrupt on rising edges  
P0.2/INT2 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode; interrupt on falling edges  
C-MOS input mode; interrupt on rising and falling edges  
Push-pull output mode  
C-MOS input mode; interrupt on rising edges  
P0.1/INT1 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode; interrupt on falling edges  
C-MOS input mode; interrupt on rising and falling edges  
Push-pull output mode  
C-MOS input mode; interrupt on rising edges  
.1–.0  
P0.0/INT0 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode; interrupt on falling edges  
C-MOS input mode; interrupt on rising and falling edges  
Push-pull output mode  
C-MOS input mode; interrupt on rising edges  
NOTES:  
1. The INT3–INT0 external interrupts at P0.3–P0.0 are interrupt level IRQ6. Each interrupt has a separate vector  
address.  
2. You can assign pull-up resistors to individual port 0 pins by making the appropriate settings to the P0PUR register.  
4-15  
CONTROL REGISTERS  
S3P80C5/C80C5/C80C8  
P0INT— Port 0 External Interrupt Enable Register  
F1H  
Set 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R
R
R
R
R
R
R
R
Addressing Mode  
Register addressing mode only  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P0.7 External Interrupt (INT4) Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
P0.6 External Interrupt (INT4) Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
P0.5 External Interrupt (INT4) Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
P0.4 External Interrupt (INT4) Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
P0.3 External Interrupt (INT3) Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
P0.2 External Interrupt (INT2) Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
P0.1 External Interrupt (INT1) Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
P0.0 External Interrupt (INT0) Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
4-16  
S3P80C5/C80C5/C80C8  
CONTROL REGISTERS  
P0PND— Port 0 External Interrupt Pending Register  
F2H  
Set 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
P0.7 External Interrupt (INT4) Pending Flag (note)  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
0
1
No P0.7 external interrupt pending (when read)  
P0.7 external interrupt is pending (when read)  
P0.6 External Interrupt (INT4) Pending Flag  
0
1
No P0.6 external interrupt pending (when read)  
P0.6 external interrupt is pending (when read)  
P0.5 External Interrupt (INT4) Pending Flag  
0
1
No P0.5 external interrupt pending (when read)  
P0.5 external interrupt is pending (when read)  
P0.4 External Interrupt (INT4) Pending Flag  
0
1
No P0.4 external interrupt pending (when read)  
P0.4 external interrupt is pending (when read)  
P0.3 External Interrupt (INT3) Pending Flag  
0
1
No P0.3 external interrupt pending (when read)  
P0.3 external interrupt is pending (when read)  
P0.2 External Interrupt (INT2) Pending Flag  
0
1
No P0.2 external interrupt pending (when read)  
P0.2 external interrupt is pending (when read)  
P0.1 External Interrupt (INT1) Pending Flag  
0
1
No P0.1 external interrupt pending (when read)  
P0.1 external interrupt is pending (when read)  
P0.0 External Interrupt (INT0) Pending Flag  
0
1
No P0.0 external interrupt pending (when read)  
P0.0 external interrupt is pending (when read)  
NOTE: To clear an interrupt pending condition, write a "0" to the appropriate pending flag. Writing a "1" to an interrupt  
pending flag (POND.0–7) has no effect.  
4-17  
CONTROL REGISTERS  
S3P80C5/C80C5/C80C8  
P0PUR— Port 0 Pull-up Resistor Enable Register  
E7H  
Set 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P0.7 Pull-up Resistor Enable Bit  
0
1
Enable pull-up resistor  
Disable pull-up resistor  
P0.6 Pull-up Resistor Enable Bit  
0
1
Enable pull-up resistor  
Disable pull-up resistor  
P0.5 Pull-up Resistor Enable Bit  
0
1
Enable pull-up resistor  
Disable pull-up resistor  
P0.4 Pull-up Resistor Enable Bit  
0
1
Enable pull-up resistor  
Disable pull-up resistor  
P0.3 Pull-up Resistor Enable Bit  
0
1
Enable pull-up resistor  
Disable pull-up resistor  
P0.2 Pull-up Resistor Enable Bit  
0
1
Enable pull-up resistor  
Disable pull-up resistor  
P0.1 Pull-up Resistor Enable Bit  
0
1
Enable pull-up resistor  
Disable pull-up resistor  
P0.0 Pull-up Resistor Enable Bit  
0
1
Enable pull-up resistor  
Disable pull-up resistor  
4-18  
S3P80C5/C80C5/C80C8  
CONTROL REGISTERS  
P1CONH— Port 1 Control Register (High Byte)  
EAH  
Set 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5–.4  
.3–.2  
.1–.0  
P1.7 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode  
Open-drain output mode  
Push-pull output mode  
Invalid setting  
P1.6 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode  
Open-drain output mode  
Push-pull output mode  
Invalid setting  
P1.5 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode  
Open-drain output mode  
Push-pull output mode  
Invalid setting  
P1.4 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode  
Open-drain output mode  
Push-pull output mode  
Invalid setting  
4-19  
CONTROL REGISTERS  
S3P80C5/C80C5/C80C8  
P1CONL— Port 1 Control Register (Low Byte)  
EBH  
Set 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5–.4  
.3–.2  
.1–.0  
P1.3 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode  
Open-drain output mode  
Push-pull output mode  
Invalid setting  
P1.2 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode  
Open-drain output mode  
Push-pull output mode  
Invalid setting  
P1.1 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode  
Open-drain output mode  
Push-pull output mode  
Invalid setting  
P1.0 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode  
Open-drain output mode  
Push-pull output mode  
Invalid setting  
4-20  
S3P80C5/C80C5/C80C8  
CONTROL REGISTERS  
P1PUR— Port 0 Pull-up Resistor Enable Register  
ECH  
Set 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P1.7 Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P1.6 Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P1.5 Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P1.4 Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P1.3 Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P1.2 Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P1.1 Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P1.0 Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
4-21  
CONTROL REGISTERS  
S3P80C5/C80C5/C80C8  
P2CON— Port 2 Control Register  
F0H  
Set 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5–.4  
.3–.2  
P2.2 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode  
Open-drain output mode  
Push-pull output mode  
C-MOS input with pull up mode  
P2.1 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode  
Open-drain output mode  
Push-pull output mode  
C-MOS input with pull up mode  
P2.0 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode  
Open-drain output mode  
Push-pull output mode  
C-MOS input with pull up mode  
.1  
.0  
P2.1 Alternative Function Selection Bits  
0
0
Normal I/O function  
REM/T0CK function  
P2.0 Alternative Function Selection Bits  
0
0
Normal I/O function  
T0PWN function  
4-22  
S3P80C5/C80C5/C80C8  
CONTROL REGISTERS  
PP— Register Page Pointer  
DFH  
Set 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.4  
Destination Register Page Selection Bits  
Destination: page 0 (note)  
0
0
0
0
.3–.0  
Source Register Page Selection Bits Bits  
Source: page 0 (note)  
0
0
0
0
NOTE: In the S3P80C5/C80C5/C80C8 microcontroller, a paged expansion of the  
internal register file is not implemented. For this reason, only page 0 settings are valid. Register page pointer values  
for the source and destination register page are automatically set to '0000B' following a hardware reset. These  
values should not be changed during normal operation.  
4-23  
CONTROL REGISTERS  
S3P80C5/C80C5/C80C8  
RP0— Register Pointer 0  
D6H  
Set 1  
Bit Identifier  
.7  
1
.6  
1
.5  
0
.4  
0
.3  
0
.2  
.1  
.0  
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.3  
.2–.0  
Destination Register Page Selection Bits  
Register pointer 0 can independently point to one of the 24 8-byte working register  
areas in the register file. Using the register pointers RP0 and RP1, you can select  
two 8-byte register slices at one time as active working register space. After a reset,  
RP0 points to address C0H in register set 1, selecting the 8-byte working register  
slice C0H–C7H.  
Not used for S3P80C5/C80C5/C80C8.  
RP1— Register Pointer 1  
D7H  
Set 1  
Bit Identifier  
.7  
1
.6  
1
.5  
0
.4  
0
.3  
1
.2  
.1  
.0  
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.3  
.2–.0  
Register Pointer 1 Address Value  
Register pointer 1 can independently point to one of the 24 8-byte working register  
areas in the register file. Using the register pointers RP0 and RP1, you can select  
two 8-byte register slices at one time as active working register space. After a reset,  
RP1 points to address C8H in register set 1, selecting the 8-byte working register  
slice C8H–CFH.  
Not used for S3P80C5/C80C5/C80C8.  
4-24  
S3P80C5/C80C5/C80C8  
CONTROL REGISTERS  
SPL— Stack Pointer (Low Byte)  
D9H  
Set 1  
Bit Identifier  
.7  
x
.6  
x
.5  
.4  
x
.3  
x
.2  
x
.1  
x
.0  
x
x
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.0  
Stack Pointer Address (Low Byte)  
The SP value is undefined following a reset.  
STOPCON— Stop Control Register  
FBH  
Set 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
W
W
W
W
W
W
W
W
Addressing Mode  
Register addressing mode only  
.7–.0  
Stop Control Register enable bits  
1
0
1
0
0
1
0
1
Enable STOPCON  
NOTES:  
1. To get into STOP mode, stop control register must be enabled just before STOP instruction.  
2. When STOP mode is released, stop control register (STOPCON) value is cleared automatically.  
3. It is prohibited to write another value into STOPCON.  
4-25  
CONTROL REGISTERS  
S3P80C5/C80C5/C80C8  
SYM— System Mode Register  
DEH  
Set 1  
Bit Identifier  
.7  
0
.6  
.5  
.4  
x
.3  
x
.2  
x
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
Tri-State External Interface Control Bit (1)  
.7  
0
1
Normal operation (disable tri-state operation)  
Set external interface lines to high impedance (enable tri-state operation)  
.6–.5  
.4–.2  
Not used for S3P80C5/C80C5/C80C8.  
Fast Interrupt Level Selection Bits (2)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
IRQ0  
IRQ1  
Not used for  
S3P80C5/C80C5/C80C8.  
IRQ6  
IRQ7  
Fast Interrupt Enable Bit (3)  
.1  
0
1
Disable fast interrupt processing  
Enable fast interrupt processing  
Global Interrupt Enable Bit (4)  
.0  
0
1
Disable global interrupt processing  
Enable global interrupt processing  
NOTES:  
1. Because an external interface is not implemented for the S3P80C5/C80C5/C80C8, SYM.7 must always be "0".  
2. You can select only one interrupt level at a time for fast interrupt processing.  
3. Setting SYM.1 to "1" enables fast interrupt processing for the interrupt level currently selected by SYM.2–SYM.4.  
4. Following a reset, you must enable global interrupt processing by executing an EI instruction (not by writing a "1"  
to SYM.0).  
4-26  
S3P80C5/C80C5/C80C8  
CONTROL REGISTERS  
T0CON— Timer 0 Control Register  
D2H  
Set 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
Timer 0 Input Clock Selection Bits  
fOSC/4096  
fOSC/256  
fOSC/8  
0
0
1
1
0
1
0
1
External clock input (at the T0CK pin, P2.1)  
.5–.4  
Timer 0 Operating Mode Selection Bits  
0
0
1
1
0
1
0
1
Interval timer mode (counter cleared by match signal)  
Overflow mode (OVF interrupt can occur)  
Overflow mode (OVF interrupt can occur)  
PWM mode (OVF interrupt can occur)  
.3  
.2  
.1  
.0  
Timer 0 Counter Clear Bit  
0
1
No effect (when write)  
Clear T0 counter, T0CNT (when write)  
Timer 0 Overflow Interrupt Enable Bit (note)  
0
1
Disable T0 overflow interrupt  
Enable T0 overflow interrupt  
Timer 0 Match Interrupt Enable Bit  
0
1
Disable T0 match interrupt  
Enable T0 match interrupt  
Timer 0 Match Interrupt Pending Flag  
0
0
1
1
No T0 match interrupt pending (when read)  
Clear T0 match interrupt pending condition (when write)  
T0 match interrupt is pending (when read)  
No effect (when write)  
NOTE: A timer 0 overflow interrupt pending condition is automatically cleared by hardware. However, the timer 0  
match/ capture interrupt, IRQ0, vector FCH, must be cleared by the interrupt service routine.  
4-27  
CONTROL REGISTERS  
S3P80C5/C80C5/C80C8  
T1CON— Timer 1 Control Register  
FAH  
Set 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
Timer 1 Input Clock Selection Bits  
fOSC/4  
fOSC/8  
fOSC/16  
0
0
1
1
0
1
0
1
Internal clock (counter a flip-flop, T-FF)  
.5–.4  
Timer 1 Operating Mode Selection Bits  
0
0
1
1
0
1
0
1
Interval timer mode (counter cleared by match signal)  
Overflow mode (OVF interrupt can occur)  
Overflow mode (OVF interrupt can occur)  
Overflow mode (OVF interrupt can occur)  
.3  
.2  
.1  
.0  
Timer 1 Counter Clear Bit  
0
1
No effect (when write)  
Clear T1 counter, T1CNT (when write)  
Timer 1 Overflow Interrupt Enable Bit (note)  
0
1
Disable T1 overflow interrupt  
Enable T1 overflow interrupt  
Timer 1 Match/Capture Interrupt Enable Bit  
0
1
Disable T1 match interrupt  
Enable T1 match interrupt  
Timer 1 Match/Capture Interrupt Pending Flag  
0
0
1
1
No T1 match interrupt pending (when read)  
Clear T1 match interrupt pending condition (when write)  
T1 match interrupt is pending (when read)  
No effect (when write)  
NOTE: A timer 1 overflow interrupt pending condition is automatically cleared by hardware. However, the timer 1 match/  
capture interrupt, IRQ1, vector F6H, must be cleared by the interrupt service routine.  
4-28  
S3P80C5/C80C5/C80C8  
INTERRUPT STRUCTURE  
5
INTERRUPT STRUCTURE  
OVERVIEW  
The S3C8-series interrupt structure has three basic components: levels, vectors, and sources. The SAM87 CPU  
recognizes up to eight interrupt levels and supports up to 128 interrupt vectors. When a specific interrupt level  
has more than one vector address, the vector priorities are established in hardware. A vector address can be  
assigned to one or more sources.  
Levels  
Interrupt levels are the main unit for interrupt priority assignment and recognition. All peripherals and I/O blocks  
can issue interrupt requests. In other words, peripheral and I/O operations are interrupt-driven. There are eight  
possible interrupt levels: IRQ0–IRQ7, also called level 0 – level 7. Each interrupt level directly corresponds to an  
interrupt request number (IRQn). The total number of interrupt levels used in the interrupt structure varies from  
device to device. The S3P80C5/C80C5/C80C8 interrupt structure recognizes five interrupt levels.  
The interrupt level numbers 0 through 7 do not necessarily indicate the relative priority of the levels. They are  
simply identifiers for the interrupt levels that are recognized by the CPU. The relative priority of different interrupt  
levels is determined by settings in the interrupt priority register, IPR. Interrupt group and subgroup logic controlled  
by IPR settings lets you define more complex priority relationships between different levels.  
Vectors  
Each interrupt level can have one or more interrupt vectors, or it may have no vector address assigned at all.  
The maximum number of vectors that can be supported for a given level is 128. (The actual number of vectors  
used for S3C8-series devices is always much smaller.) If an interrupt level has more than one vector address, the  
vector priorities are set in hardware. The S3P80C5/C80C5/C80C8 uses ten vectors. One vector address is  
shared by four interrupt sources.  
Sources  
A source is any peripheral that generates an interrupt. A source can be an external pin or a counter overflow, for  
example. Each vector can have several interrupt sources. In the S3P80C5/C80C5/C80C8 interrupt structure,  
there are thirteen possible interrupt sources.  
When a service routine starts, the respective pending bit is either cleared automatically by hardware or is must  
be cleared "manually" by program software. The characteristics of the source's pending mechanism determine  
which method is used to clear its respective pending bit.  
5-1  
INTERRUPT STRUCTURE  
INTERRUPT TYPES  
S3P80C5/C80C5/C80C8  
The three components of the S3C8 interrupt structure described above — levels, vectors, and sources — are  
combined to determine the interrupt structure of an individual device and to make full use of its available  
interrupt logic. There are three possible combinations of interrupt structure components, called interrupt types 1,  
2, and 3. The types differ in the number of vectors and interrupt sources assigned to each level (see Figure 5-1):  
Type 1:  
Type 2:  
Type 3:  
One level (IRQn) + one vector (V ) + one source (S )  
1 1  
One level (IRQn) + one vector (V ) + multiple sources (S – S )  
1
1
n
One level (IRQn) + multiple vectors (V – V ) + multiple sources (S – S , S  
n+1  
– S )  
n+m  
1
n
1
n
In the S3P80C5/C80C5/C80C8 microcontroller, all three interrupt types are implemented.  
Levels  
Vectors  
Sources  
Type 1:  
Type 2:  
IRQn  
V1  
S1  
S1  
IRQn  
IRQn  
V1  
S2  
S3  
Sn  
V1  
V2  
V3  
Vn  
S1  
Type 3:  
S2  
S3  
Sn  
Sn + 1  
Sn + 2  
Sn + m  
NOTES:  
1. The number of Sn and Vn value is expandable.  
2. In the S3P80C5/C80C5/C80C8 implementation, interrupt types 1, 2, and 3 is used.  
Figure 5-1. S3C8-Series Interrupt Types  
5-2  
S3P80C5/C80C5/C80C8  
INTERRUPT STRUCTURE  
S3P80C5/C80C5/C80C8 INTERRUPT STRUCTURE  
The S3P80C5 microcontroller supports two kinds interrupt structure  
— Vectored Interrupt  
— Non vectored interrupt (Reset interrupt): INTR  
The S3P80C5/C80C5/C80C8 microcontroller supports thirteen interrupt sources. Nine of the interrupt sources  
have a corresponding interrupt vector address; the remaining four interrupt sources share the same vector  
address. Five interrupt levels are recognized by the CPU in this device-specific interrupt structure, as shown in  
Figure 5-2.  
When multiple interrupt levels are active, the interrupt priority register (IPR) determines the order in which  
contending interrupts are to be serviced. If multiple interrupts occur within the same interrupt level, the interrupt  
with the lowest vector address is usually processed first. (The relative priorities of multiple interrupts within a  
single level are fixed in hardware.)  
When the CPU grants an interrupt request, interrupt processing starts: All other interrupts are disabled and the  
program counter value and state flags are pushed to stack. The starting address of the service routine is fetched  
from the appropriate vector address (plus the next 8-bit value to concatenate the full 16-bit address) and the  
service routine is executed. The S3P80C5/C80C5/C80C8 microcontroller supports non vectored interrupt -  
Interrupt with Reset(INTR) - to occur interrupt with system reset. The Interrupt with Reset(INTR) has nothing to do  
with interrupt levels, vectors and the registers that are related to interrupt setting. It occurs only according to the  
“P0” during “ STOP ” regardless any other things. Namely, only when a falling/rising edge occurs at any pin of  
Port 0 during STOP status, this INTR and a system reset occurs even though SYM.0 is “0”(Disable interrupt). But  
it dose not occurs while the oscillation - “IDLE” or “OPERATING” status- even though a falling/rising edge occurs  
at port 0.  
Following is the sequence that occurs Interrupt with Reset(INTR).  
1. The oscillation status is “freeze” : STOP mode  
2. A falling/rising edge is detected to any pin of Port 0.  
3. INTR occurs and it makes system reset.  
4. STOP mode is released by this system reset.  
NOTE  
Because H/W reset occurs whenever INTR occurs. A user should aware of the each ports, system  
register, control register etc.”  
5-3  
INTERRUPT STRUCTURE  
S3P80C5/C80C5/C80C8  
Levels  
Vectors  
Sources  
Reset/Clear  
H/W  
S/W  
H/W  
S/W  
H/W  
H/W  
S/W  
S/W  
S/W  
S/W  
S/W  
S/W  
S/W  
S/W  
RESET  
100H  
FCH  
FAH  
F6H  
F4H  
ECH  
E6H  
E4H  
E2H  
E0H  
Basic timer overflow/INTR/POR  
Timer 0 match  
1
0
1
0
IRQ0  
Timer 0 overflow  
Timer 1 match  
IRQ1  
IRQ4  
Timer 1 overflow  
Counter A  
3
2
1
0
P0.3 external interrupt  
P0.2 external interrupt  
P0.1 external interrupt  
P0.0 external interrupt  
P0.7 external interrupt  
P0.6 external interrupt  
P0.5 external interrupt  
P0.4 external interrupt  
IRQ6  
IRQ7  
E8H  
NOTE:  
For interrupt levels with two or more vectors, the lowest vector address  
usually the highest priority. For example, FAH has the higher priority (0)  
than FCH (1) within level IRQ0. These priorities are fixed in hardware.  
Figure 5-2. S3P80C5/C80C5/C80C8 Interrupt Structure  
5-4  
S3P80C5/C80C5/C80C8  
INTERRUPT STRUCTURE  
INTERRUPT VECTOR ADDRESSES  
All interrupt vector addresses for the S3P80C5/C80C5/C80C8 interrupt structure are stored in the vector address  
area of the internal program memory ROM, 00H–FFH. You can allocate unused locations in the vector address  
area as normal program memory. If you do so, please be careful not to overwrite any of the stored vector  
addresses. (Table 5-2 lists all vector addresses.)  
The program reset address in the ROM is 0100H.  
(Decimal)  
(HEX)  
15,872  
3E00H  
15-Kbyte  
ROM  
S3C80C5  
8,191  
1FFFH  
S3C80C8  
8-Kbyte  
ROM  
255  
0
0FFH  
0H  
Interrupt  
Vector Area  
Figure 5-3. ROM Vector Address Area  
5-5  
INTERRUPT STRUCTURE  
Vector Address  
S3P80C5/C80C5/C80C8  
Reset/Clear  
Table 5-1. S3P80C5/C80C5/C80C8 Interrupt Vectors  
Interrupt Source  
Request  
Decimal  
Value  
Hex  
Value  
Interrupt  
Level  
Priority in  
Level  
H/W  
S/W  
100H  
254  
Basic timer overflow  
Ö
RESET  
252  
250  
246  
244  
236  
232  
232  
232  
232  
230  
228  
226  
224  
FCH  
FAH  
F6H  
F4H  
ECH  
E8H  
E8H  
E8H  
E8H  
E6H  
E4H  
E2H  
E0H  
Timer 0 (match)  
IRQ0  
1
0
1
0
3
2
1
0
Ö
Ö
Timer 0 overflow  
Ö
Timer 1 (match)  
IRQ1  
Timer 1 overflow  
Ö
Ö
Counter A  
IRQ4  
IRQ7  
P0.7 external interrupt  
P0.6 external interrupt  
P0.5 external interrupt  
P0.4 external interrupt  
P0.3 external interrupt  
P0.2 external interrupt  
P0.1 external interrupt  
P0.0 external interrupt  
Ö
Ö
Ö
Ö
Ö
Ö
Ö
Ö
IRQ6  
NOTES:  
1. Interrupt priorities are identified in inverse order: '0' is highest priority, '1' is the next highest, and so on.  
2. If two or more interrupts within the same level contend, the interrupt with the lowest vector address usually has priority  
over one with a higher vector address. The priorities within a given level are fixed in hardware.  
5-6  
S3P80C5/C80C5/C80C8  
INTERRUPT STRUCTURE  
ENABLE/DISABLE INTERRUPT INSTRUCTIONS (EI, DI)  
Executing the Enable Interrupts (EI) instruction globally enables the interrupt structure. All interrupts are then  
serviced as they occur, and according to the established priorities.  
NOTE  
The system initialization routine that is executed following a reset must always contain an EI instruction  
to globally enable the interrupt structure.  
During normal operation, you can execute the DI (Disable Interrupt) instruction at any time to globally disable  
interrupt processing. The EI and DI instructions change the value of bit 0 in the SYM register. Although you can  
manipulate SYM.0 directly to enable or disable interrupts, we recommend that you use the EI and DI instructions  
instead.  
SYSTEM-LEVEL INTERRUPT CONTROL REGISTERS  
In addition to the control registers for specific interrupt sources, four system-level registers control interrupt  
processing:  
— The interrupt mask register, IMR, enables (un-masks) or disables (masks) interrupt levels.  
— The interrupt priority register, IPR, controls the relative priorities of interrupt levels.  
— The interrupt request register, IRQ, contains interrupt pending flags for each interrupt level (as opposed to  
each interrupt source).  
— The system mode register, SYM, enables or disables global interrupt processing (SYM settings also enable  
fast interrupts and control the activity of external interface, if implemented).  
Table 5-2. Interrupt Control Register Overview  
Control Register  
ID  
R/W  
Function Description  
Interrupt mask register  
IMR  
R/W  
Bit settings in the IMR register enable or disable interrupt  
processing for each of the five interrupt levels: IRQ0, IRQ1,  
IRQ4, and IRQ6–IRQ7.  
Interrupt priority register  
IPR  
R/W  
Controls the relative processing priorities of the interrupt  
levels. The five levels of the S3P80C5/C80C5/C80C8 are  
organized into three groups: A, B, and C. Group A is IRQ0 and  
IRQ1, group B is IRQ4, and group C is IRQ6, and IRQ7.  
Interrupt request register  
System mode register  
IRQ  
R
This register contains a request pending bit for each interrupt  
level.  
SYM  
R/W  
Dynamic global interrupt processing enable/ disable, fast  
interrupt processing, and external interface control (An  
external memory interface is not implemented in the  
S3P80C5/C80C5/C80C8 microcontroller).  
5-7  
INTERRUPT STRUCTURE  
S3P80C5/C80C5/C80C8  
INTERRUPT PROCESSING CONTROL POINTS  
Interrupt processing can therefore be controlled in two ways: globally or by specific interrupt level and source.  
The system-level control points in the interrupt structure are, therefore:  
— Global interrupt enable and disable (by EI and DI instructions or by direct manipulation of SYM.0 )  
— Interrupt level enable/disable settings (IMR register)  
— Interrupt level priority settings (IPR register)  
— Interrupt source enable/disable settings in the corresponding peripheral control registers  
NOTE  
When writing the part of your application program that handles interrupt processing, be sure to include  
the necessary register file address (register pointer) information.  
EI  
S
R
Q
Interrupt Request  
Register (Read-only)  
Polling  
Cycle  
RESET  
IRQ0, IRQ1,  
IRQ4 and IRQ6- IRQ7  
Interrupts  
Interrupt Priority  
Register  
Vector  
Interrupt  
Cycle  
Interrupt Mask  
Register  
Global Interrupt Control  
(EI, DI, or SYM.0  
manipulation)  
Figure 5-4. Interrupt Function Diagram  
5-8  
S3P80C5/C80C5/C80C8  
INTERRUPT STRUCTURE  
PERIPHERAL INTERRUPT CONTROL REGISTERS  
For each interrupt source there is one or more corresponding peripheral control registers that let you control the  
interrupt generated by that peripheral (see Table 5-3).  
Table 5-3. Interrupt Source Control and Data Registers  
Interrupt Source  
Interrupt Level  
Register(s)  
T0CON (note)  
Location(s) in Set 1  
D2H  
D1H  
Timer 0 match or timer 0  
overflow  
IRQ0  
IRQ1  
IRQ4  
IRQ7  
T0DATA  
T1CON (note)  
T1DATAH, T1DATAL  
Timer 1 match or timer 1  
overflow  
FAH  
F8H, F9H  
Counter A  
CACON  
CADATAH, CADATAL  
F3H  
F4H, F5H  
P0.7 external interrupt  
P0.6 external interrupt  
P0.5 external interrupt  
P0.4 external interrupt  
P0CONH  
P0INT  
P0PND  
E8H  
F1H  
F2H  
P0.3 external interrupt  
P0.2 external interrupt  
P0.1 external interrupt  
P0.0 external interrupt  
IRQ6  
P0CONL  
P0INT  
P0PND  
E9H  
F1H  
F2H  
NOTE: Because the timer 0 and timer 1 overflow interrupts are cleared by hardware, the T0CON and T1CON registers  
control only the enable/disable functions. The T0CON and T1CON registers contain enable/disable and pending  
bits for the timer 0 and timer 1 match interrupts, respectively.  
5-9  
INTERRUPT STRUCTURE  
S3P80C5/C80C5/C80C8  
SYSTEM MODE REGISTER (SYM)  
The system mode register, SYM (set 1, DEH), is used to globally enable and disable interrupt processing and to  
control fast interrupt processing (see Figure 5-5).  
A reset clears SYM.7, SYM.1, and SYM.0 to "0". The 3-bit value for fast interrupt level selection, SYM.4–SYM.2,  
is undetermined.  
The instructions EI and DI enable and disable global interrupt processing, respectively, by modifying the bit 0  
value of the SYM register. An Enable Interrupt (EI) instruction must be included in the initialization routine, which  
follows a reset operation, in order to enable interrupt processing. Although you can manipulate SYM.0 directly to  
enable and disable interrupts during normal operation, we recommend using the EI and DI instructions for this  
purpose.  
System Mode Register (SYM)  
DEH, Set 1, R/W  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
MSB  
LSB  
External interface  
tri-state enable bit:  
0 = Normal (Tri-state)  
1 = High (Tri-state)  
Global interrupt enable bit:  
0 = Disable all interrupts  
1 = Enable all interrupts  
Fast interrupt enable bit:  
0 = Disable fast interrupt  
1 = Enable fast interrupt  
Fast interrupt level  
selection bits:  
Not used for the S3C80C5/C80C8.  
0 0 0 IRQ0  
0 0 1 IRQ1  
0 1 0 Not used  
0 1 1 Not used  
1 0 0 Not used  
1 0 1 Not used  
1 1 0 IRQ6  
1 1 1 IRQ7  
NOTE:  
An external memory interface is not implemented.  
Figure 5-5. System Mode Register (SYM)  
5-10  
S3P80C5/C80C5/C80C8  
INTERRUPT STRUCTURE  
INTERRUPT MASK REGISTER (IMR)  
The interrupt mask register, IMR (set 1, DDH) is used to enable or disable interrupt processing for individual  
interrupt levels. After a reset, all IMR bit values are undetermined and must therefore be written to their required  
settings by the initialization routine.  
Each IMR bit corresponds to a specific interrupt level: bit 1 to IRQ1, bit 2 to IRQ2, and so on. When the IMR bit  
of an interrupt level is cleared to "0", interrupt processing for that level is disabled (masked). When you set a  
level's IMR bit to "1", interrupt processing for the level is enabled (not masked).  
The IMR register is mapped to register location DDH in set 1. Bit values can be read and written by instructions  
using the Register addressing mode.  
Interrupt Mask Register (IMR)  
DDH, Set 1, R/W  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
MSB  
LSB  
IRQ7  
IRQ0  
IRQ6  
IRQ1  
Not used  
Not used  
Not used  
IRQ4  
Interrupt level enable bits (7-6, 4, 1, 0):  
0 = Disable (mask) interrupt  
1 = Enable (un-mask) interrupt  
Figure 5-6. Interrupt Mask Register (IMR)  
5-11  
INTERRUPT STRUCTURE  
S3P80C5/C80C5/C80C8  
INTERRUPT PRIORITY REGISTER (IPR)  
The interrupt priority register, IPR (set 1, bank 0, FFH), is used to set the relative priorities of the interrupt levels  
used in the microcontroller's interrupt structure. After a reset, all IPR bit values are undetermined and must  
therefore be written to their required settings by the initialization routine.  
When more than one interrupt source is active, the source with the highest priority level is serviced first. If both  
sources belong to the same interrupt level, the source with the lowest vector address usually has priority (This  
priority is fixed in hardware).  
To support programming of the relative interrupt level priorities, they are organized into groups and subgroups by  
the interrupt logic. Please note that these groups (and subgroups) are used only by IPR logic for the IPR register  
priority definitions (see Figure 5-7):  
Group A  
Group B  
Group C  
IRQ0, IRQ1  
IRQ4  
IRQ6, IRQ7  
IPR  
IPR  
IPR  
Group A  
Group B  
Group C  
A1  
A2  
C1  
C2  
IRQ0  
IRQ1  
IRQ4  
IRQ6  
IRQ7  
Figure 5-7. Interrupt Request Priority Groups  
As you can see in Figure 5-8, IPR.7, IPR.4, and IPR.1 control the relative priority of interrupt groups A, B, and C.  
For example, the setting '001B' for these bits would select the group relationship B > C > A; the setting '101B'  
would select the relationship C > B > A.  
The functions of the other IPR bit settings are as follows:  
— IPR.5 controls the relative priorities of group C interrupts.  
— Interrupt group B has a subgroup to provide an additional priority relationship between for interrupt levels 2,  
3, and 4. IPR.3 defines the possible subgroup B relationships. IPR.2 controls interrupt group B. In the  
S3P80C5/C80C5/C80C8 implementation, interrupt levels 2 and 3 are not used. Therefore, IPR.2 and IPR.3  
settings are not evaluated, as IRQ4 is the only remaining level in the group.  
— IPR.0 controls the relative priority setting of IRQ0 and IRQ1 interrupts.  
5-12  
S3P80C5/C80C5/C80C8  
INTERRUPT STRUCTURE  
Interrupt Priority Register (IPR)  
FFH, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Group priority:  
D7 D4 D1  
Group A  
0 = IRQ0 > IRQ1  
1 = IRQ1 > IRQ0  
Group B(note)  
0 = IRQ4  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0 = Undefined  
1 = B > C > A  
0 = A > B > C  
1 = B > A > C  
0 = C > A > B  
1 = C > B > A  
0 = A > C > B  
1 = Undefined  
1 = IRQ4  
Subgroup B(note)  
0 = IRQ4  
1 = IRQ4  
Group C(note)  
0 = IRQ6, IRQ7  
1 = IRQ6, IRQ7  
Subgroup C  
0 = IRQ6 > IRQ7  
1 = IRQ7 > IRQ6  
NOTE: In this device interrupt structure, only levels IRQ0, IRQ1, IRQ4, IRQ6-IRQ7  
are used. Settings for group/subgroup B, which control relative priorities for  
levels IRQ2, IRQ3 and IRQ5, are therefore not evaluated.  
Figure 5-8. Interrupt Priority Register (IPR)  
5-13  
INTERRUPT STRUCTURE  
S3P80C5/C80C5/C80C8  
INTERRUPT REQUEST REGISTER (IRQ)  
You can poll bit values in the interrupt request register, IRQ (set 1, DCH), to monitor interrupt request status for  
all levels in the microcontroller's interrupt structure. Each bit corresponds to the interrupt level of the same  
number: bit 0 to IRQ0, bit 1 to IRQ1, and so on. A "0" indicates that no interrupt request is currently being issued  
for that level; a "1" indicates that an interrupt request has been generated for that level.  
IRQ bit values are read-only addressable using Register addressing mode. You can read (test) the contents of  
the IRQ register at any time using bit or byte addressing to determine the current interrupt request status of  
specific interrupt levels. After a reset, all IRQ status bits are cleared to "0".  
You can poll IRQ register values even if a DI instruction has been executed (that is, if global interrupt processing  
is disabled). If an interrupt occurs while the interrupt structure is disabled, the CPU will not service it. You can,  
however, still detect the interrupt request by polling the IRQ register. In this way, you can determine which events  
occurred while the interrupt structure was globally disabled.  
Interrupt Request Register (IRQ)  
DCH, Set 1, Read-only  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
IRQ0  
IRQ1  
Not  
used  
Not  
used  
IRQ4  
Not  
IRQ6  
used  
IRQ7  
Interrupt level request pending bits:  
0 = Interrupt level is not pending  
1 = Interrupt level is pending  
Figure 5-9. Interrupt Request Register (IRQ)  
5-14  
S3P80C5/C80C5/C80C8  
INTERRUPT STRUCTURE  
INTERRUPT PENDING FUNCTION TYPES  
Overview  
There are two types of interrupt pending bits: One type is automatically cleared by hardware after the interrupt  
service routine is acknowledged and executed; the other type must be cleared by the interrupt service routine.  
Pending Bits Cleared Automatically by Hardware  
For interrupt pending bits that are cleared automatically by hardware, interrupt logic sets the corresponding  
pending bit to "1" when a request occurs. It then issues an IRQ pulse to inform the CPU that an interrupt is  
waiting to be serviced. The CPU acknowledges the interrupt source by sending an IACK, executes the service  
routine, and clears the pending bit to "0". This type of pending bit is not mapped and cannot, therefore, be read or  
written by application software.  
In the S3P80C5/C80C5/C80C8 interrupt structure, the timer 0 and timer 1 overflow interrupts (IRQ0 and IRQ1),  
and the counter A interrupt (IRQ4) belong to this category of interrupts whose pending condition is cleared  
automatically by hardware.  
Pending Bits Cleared by the Service Routine  
The second type of pending bit must be cleared by program software. The service routine must clear the  
appropriate pending bit before a return-from-interrupt subroutine (IRET) occurs. To do this, a "0" must be written  
to the corresponding pending bit location in the source's mode or control register.  
In the S3P80C5/C80C5/C80C8 interrupt structure, pending conditions for all interrupt sources except the timer 0  
and timer 1 overflow interrupts and the counter A borrow interrupt, must be cleared by the interrupt service  
routine.  
5-15  
INTERRUPT STRUCTURE  
S3P80C5/C80C5/C80C8  
INTERRUPT SOURCE POLLING SEQUENCE  
The interrupt request polling and servicing sequence is as follows:  
1. A source generates an interrupt request by setting the interrupt request bit to "1".  
2. The CPU polling procedure identifies a pending condition for that source.  
3. The CPU checks the source's interrupt level.  
4. The CPU generates an interrupt acknowledge signal.  
5. Interrupt logic determines the interrupt's vector address.  
6. The service routine starts and the source's pending bit is cleared to "0" (by hardware or by software).  
7. The CPU continues polling for interrupt requests.  
INTERRUPT SERVICE ROUTINES  
Before an interrupt request can be serviced, the following conditions must be met:  
— Interrupt processing must be globally enabled (EI, SYM.0 = "1")  
— The interrupt level must be enabled (IMR register)  
— The interrupt level must have the highest priority if more than one level is currently requesting service  
— The interrupt must be enabled at the interrupt's source (peripheral control register)  
If all of the above conditions are met, the interrupt request is acknowledged at the end of the instruction cycle.  
The CPU then initiates an interrupt machine cycle that completes the following processing sequence:  
1. Reset (clear to "0") the interrupt enable bit in the SYM register (SYM.0) to disable all subsequent interrupts.  
2. Save the program counter (PC) and status flags to the system stack.  
3. Branch to the interrupt vector to fetch the address of the service routine.  
4. Pass control to the interrupt service routine.  
When the interrupt service routine is completed, the CPU issues an Interrupt Return (IRET). The IRET restores  
the PC and status flags and sets SYM.0 to "1", allowing the CPU to process the next interrupt request.  
5-16  
S3P80C5/C80C5/C80C8  
INTERRUPT STRUCTURE  
GENERATING INTERRUPT VECTOR ADDRESSES  
The interrupt vector area in the ROM (00H–FFH) contains the addresses of interrupt service routines that  
correspond to each level in the interrupt structure. Vectored interrupt processing follows this sequence:  
1. Push the program counter's low-byte value to the stack.  
2. Push the program counter's high-byte value to the stack.  
3. Push the FLAG register values to the stack.  
4. Fetch the service routine's high-byte address from the vector location.  
5. Fetch the service routine's low-byte address from the vector location.  
6. Branch to the service routine specified by the concatenated 16-bit vector address.  
NOTE  
A 16-bit vector address always begins at an even-numbered ROM address within the range 00H–FFH.  
NESTING OF VECTORED INTERRUPTS  
It is possible to nest a higher-priority interrupt request while a lower-priority request is being serviced. To do this,  
you must follow these steps:  
1. Push the current 8-bit interrupt mask register (IMR) value to the stack (PUSH IMR).  
2. Load the IMR register with a new mask value that enables only the higher priority interrupt.  
3. Execute an EI instruction to enable interrupt processing (a higher priority interrupt will be processed if it  
occurs).  
4. When the lower-priority interrupt service routine ends, restore the IMR to its original value by returning the  
previous mask value from the stack (POP IMR).  
5. Execute an IRET.  
Depending on the application, you may be able to simplify the above procedure to some extent.  
INSTRUCTION POINTER (IP)  
The instruction pointer (IP) is used by all S3C8-series microcontrollers to control the optional high-speed interrupt  
processing feature called fast interrupts. The IP consists of register pair DAH and DBH. The IP register names  
are IPH (high byte, IP15–IP8) and IPL (low byte, IP7–IP0).  
FAST INTERRUPT PROCESSING  
The feature called fast interrupt processing lets you specify that an interrupt within a given level be completed in  
approximately six clock cycles instead of the usual 16 clock cycles. To select a specific interrupt level for fast  
interrupt processing, you write the appropriate 3-bit value to SYM.4–SYM.2. Then, to enable fast interrupt  
processing for the selected level, you set SYM.1 to "1".  
5-17  
INTERRUPT STRUCTURE  
S3P80C5/C80C5/C80C8  
FAST INTERRUPT PROCESSING (Continued)  
Two other system registers support fast interrupt processing:  
— The instruction pointer (IP) contains the starting address of the service routine (and is later used to swap the  
program counter values), and  
— When a fast interrupt occurs, the contents of the FLAGS register is stored in an unmapped, dedicated  
register called FLAGS' ("FLAGS prime").  
NOTE  
For the S3P80C5/C80C5/C80C8 microcontroller, the service routine for any one of the five interrupt  
levels: IRQ0, IRQ1, IRQ4 or IRQ6–IRQ7, can be selected for fast interrupt processing.  
Procedure for Initiating Fast Interrupts  
To initiate fast interrupt processing, follow these steps:  
1. Load the start address of the service routine into the instruction pointer (IP).  
2. Load the interrupt level number (IRQn) into the fast interrupt selection field (SYM.4–SYM.2)  
3. Write a "1" to the fast interrupt enable bit in the SYM register.  
Fast Interrupt Service Routine  
When an interrupt occurs in the level selected for fast interrupt processing, the following events occur:  
1. The contents of the instruction pointer and the PC are swapped.  
2. The FLAG register values are written to the FLAGS' ("FLAGS prime") register.  
3. The fast interrupt status bit in the FLAGS register is set.  
4. The interrupt is serviced.  
5. Assuming that the fast interrupt status bit is set, when the fast interrupt service routine ends, the instruction  
pointer and PC values are swapped back.  
6. The content of FLAGS' ("FLAGS prime") is copied automatically back to the FLAGS register.  
7. The fast interrupt status bit in FLAGS is cleared automatically.  
Relationship to Interrupt Pending Bit Types  
As described previously, there are two types of interrupt pending bits: One type is automatically cleared by  
hardware after the interrupt service routine is acknowledged and executed, and the other type must be cleared by  
the application program's interrupt service routine. You can select fast interrupt processing for interrupts with  
either type of pending condition clear function — by hardware or by software.  
Programming Guidelines  
Remember that the only way to enable/disable a fast interrupt is to set/clear the fast interrupt enable bit in the  
SYM register, SYM.1. Executing an EI or DI instruction globally enables or disables all interrupt processing,  
including fast interrupts. If you use fast interrupts, remember to load the IP with a new start address when the fast  
interrupt service routine ends.  
5-18  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
6
INSTRUCTION SET  
OVERVIEW  
The SAM8 instruction set is specifically designed to support the large register files that are typical of most SAM8  
microcontrollers. There are 78 instructions. The powerful data manipulation capabilities and features of the  
instruction set include:  
— A full complement of 8-bit arithmetic and logic operations, including multiply and divide  
— No special I/O instructions (I/O control/data registers are mapped directly into the register file)  
— Decimal adjustment included in binary-coded decimal (BCD) operations  
— 16-bit (word) data can be incremented and decremented  
— Flexible instructions for bit addressing, rotate, and shift operations  
DATA TYPES  
The SAM8 CPU performs operations on bits, bytes, BCD digits, and two-byte words. Bits in the register file can  
be set, cleared, complemented, and tested. Bits within a byte are numbered from 7 to 0, where bit 0 is the least  
significant (right-most) bit.  
REGISTER ADDRESSING  
To access an individual register, an 8-bit address in the range 0-255 or the 4-bit address of a working register is  
specified. Paired registers can be used to construct 16-bit data or 16-bit program memory or data memory  
addresses. For detailed information about register addressing, please refer to Section 2, "Address Spaces."  
ADDRESSING MODES  
There are seven explicit addressing modes: Register (R), Indirect Register (IR), Indexed (X), Direct (DA),  
Relative (RA), Immediate (IM), and Indirect (IA). For detailed descriptions of these addressing modes, please  
refer to Section 3, "Addressing Modes."  
6-1  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
Table 6-1. Instruction Group Summary  
Operands Instruction  
Mnemonic  
Load Instructions  
CLR  
dst  
Clear  
LD  
dst, src  
dst, src  
dst, src  
dst, src  
dst, src  
dst, src  
dst, src  
dst, src  
dst, src  
dst, src  
dst, src  
dst, src  
dst, src  
dst  
Load  
LDB  
Load bit  
LDE  
Load external data memory  
Load program memory  
LDC  
LDED  
LDCD  
LDEI  
Load external data memory and decrement  
Load program memory and decrement  
Load external data memory and increment  
Load program memory and increment  
Load external data memory with pre-decrement  
Load program memory with pre-decrement  
Load external data memory with pre-increment  
Load program memory with pre-increment  
Load word  
LDCI  
LDEPD  
LDCPD  
LDEPI  
LDCPI  
LDW  
POP  
Pop from stack  
POPUD  
POPUI  
PUSH  
PUSHUD  
PUSHUI  
dst, src  
dst, src  
Src  
Pop user stack (decrementing)  
Pop user stack (incrementing)  
Push to stack  
dst, src  
dst, src  
Push user stack (decrementing)  
Push user stack (incrementing)  
6-2  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
Table 6-1. Instruction Group Summary (Continued)  
Operands Instruction  
Mnemonic  
Arithmetic Instructions  
ADC  
ADD  
CP  
dst,src  
dst,src  
Add with carry  
Add  
dst,src  
dst  
Compare  
DA  
Decimal adjust  
Decrement  
Decrement word  
Divide  
DEC  
DECW  
DIV  
dst  
dst  
dst,src  
dst  
INC  
Increment  
INCW  
MULT  
SBC  
SUB  
dst  
Increment word  
Multiply  
dst,src  
dst,src  
dst,src  
Subtract with carry  
Subtract  
Logic Instructions  
AND  
COM  
OR  
dst,src  
dst  
Logical AND  
Complement  
dst,src  
dst,src  
Logical OR  
XOR  
Logical exclusive OR  
6-3  
INSTRUCTION SET  
Mnemonic  
S3P80C5/C80C5/C80C8  
Table 6-1. Instruction Group Summary (Continued)  
Operands Instruction  
Program Control Instructions  
BTJRF  
BTJRT  
CALL  
CPIJE  
CPIJNE  
DJNZ  
ENTER  
EXIT  
IRET  
JP  
dst,src  
dst,src  
dst  
Bit test and jump relative on false  
Bit test and jump relative on true  
Call procedure  
dst,src  
dst,src  
r,dst  
Compare, increment and jump on equal  
Compare, increment and jump on non-equal  
Decrement register and jump on non-zero  
Enter  
Exit  
Interrupt return  
Jump on condition code  
Jump unconditional  
Jump relative on condition code  
Next  
cc,dst  
dst  
JP  
JR  
cc,dst  
NEXT  
RET  
Return  
WFI  
Wait for interrupt  
Bit Manipulation Instructions  
BAND  
BCP  
BITC  
BITR  
BITS  
BOR  
BXOR  
TCM  
TM  
dst,src  
dst,src  
dst  
Bit AND  
Bit compare  
Bit complement  
Bit reset  
dst  
dst  
Bit set  
dst,src  
dst,src  
dst,src  
dst,src  
Bit OR  
Bit XOR  
Test complement under mask  
Test under mask  
6-4  
S3P80C5/C80C5/C80C8  
Mnemonic  
INSTRUCTION SET  
Table 6-1. Instruction Group Summary (Concluded)  
Operands Instruction  
Rotate and Shift Instructions  
RL  
dst  
dst  
dst  
dst  
dst  
dst  
Rotate left  
RLC  
RR  
Rotate left through carry  
Rotate right  
RRC  
SRA  
SWAP  
Rotate right through carry  
Shift right arithmetic  
Swap nibbles  
CPU Control Instructions  
CCF  
DI  
Complement carry flag  
Disable interrupts  
Enable interrupts  
Enter Idle mode  
No operation  
EI  
IDLE  
NOP  
RCF  
SB0  
SB1  
SCF  
Reset carry flag  
Set bank 0  
Set bank 1  
Set carry flag  
SRP  
src  
src  
src  
Set register pointers  
Set register pointer 0  
Set register pointer 1  
Enter Stop mode  
SRP0  
SRP1  
STOP  
6-5  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
FLAGS REGISTER (FLAGS)  
The flags register FLAGS contains eight bits that describe the current status of CPU operations. Four of these  
bits, FLAGS.7–FLAGS.4, can be tested and used with conditional jump instructions; two others FLAGS.3 and  
FLAGS.2 are used for BCD arithmetic.  
The FLAGS register also contains a bit to indicate the status of fast interrupt processing (FLAGS.1) and a bank  
address status bit (FLAGS.0) to indicate whether bank 0 or bank 1 is currently being addressed. FLAGS register  
can be set or reset by instructions as long as its outcome does not affect the flags, such as, Load instruction.  
Logical and Arithmetic instructions such as, AND, OR, XOR, ADD, and SUB can affect the Flags register. For  
example, the AND instruction updates the Zero, Sign and Overflow flags based on the outcome of the AND  
instruction. If the AND instruction uses the Flags register as the destination, then simultaneously, two write will  
occur to the Flags register producing an unpredictable result.  
System Flags Register (FLAGS)  
D5H, Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Bank address  
status flag (BA)  
Carry flag (C)  
First interrupt  
status flag (FIS)  
Zero flag (Z)  
Sign flag (S)  
Overflow (V)  
Half-carry flag (H)  
Decimal adjust flag (D)  
Figure 6-1. System Flags Register (FLAGS)  
6-6  
S3P80C5/C80C5/C80C8  
FLAG DESCRIPTIONS  
INSTRUCTION SET  
C
Carry Flag (FLAGS.7)  
The C flag is set to "1" if the result from an arithmetic operation generates a carry-out from or a borrow to  
the bit 7 position (MSB). After rotate and shift operations, it contains the last value shifted out of the  
specified register. Program instructions can set, clear, or complement the carry flag.  
Z
Zero Flag (FLAGS.6)  
For arithmetic and logic operations, the Z flag is set to "1" if the result of the operation is zero. For  
operations that test register bits, and for shift and rotate operations, the Z flag is set to "1" if the result is  
logic zero.  
S
V
D
Sign Flag (FLAGS.5)  
Following arithmetic, logic, rotate, or shift operations, the sign bit identifies the state of the MSB of the  
result. A logic zero indicates a positive number and a logic one indicates a negative number.  
Overflow Flag (FLAGS.4)  
The V flag is set to "1" when the result of a two's-complement operation is greater than + 127 or less than  
– 128. It is also cleared to "0" following logic operations.  
Decimal Adjust Flag (FLAGS.3)  
The DA bit is used to specify what type of instruction was executed last during BCD operations, so that a  
subsequent decimal adjust operation can execute correctly. The DA bit is not usually accessed by  
programmers, and cannot be used as a test condition.  
H
Half-Carry Flag (FLAGS.2)  
The H bit is set to "1" whenever an addition generates a carry-out of bit 3, or when a subtraction borrows  
out of bit 4. It is used by the Decimal Adjust (DA) instruction to convert the binary result of a previous  
addition or subtraction into the correct decimal (BCD) result. The H flag is seldom accessed directly by a  
program.  
FIS Fast Interrupt Status Flag (FLAGS.1)  
The FIS bit is set during a fast interrupt cycle and reset during the IRET following interrupt servicing.  
When set, it inhibits all interrupts and causes the fast interrupt return to be executed when the IRET  
instruction is executed.  
BA Bank Address Flag (FLAGS.0)  
The BA flag indicates which register bank in the set 1 area of the internal register file is currently  
selected, bank 0 or bank 1. The BA flag is cleared to "0" (select bank 0) when you execute the SB0  
instruction and is set to "1" (select bank 1) when you execute the SB1 instruction.  
6-7  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET NOTATION  
Table 6-2. Flag Notation Conventions  
Flag  
C
Z
Description  
Carry flag  
Zero flag  
S
V
D
H
0
Sign flag  
Overflow flag  
Decimal-adjust flag  
Half-carry flag  
Cleared to logic zero  
Set to logic one  
1
*
Set or cleared according to operation  
Value is unaffected  
Value is undefined  
x
Table 6-3. Instruction Set Symbols  
Symbol  
dst  
src  
@
Description  
Destination operand  
Source operand  
Indirect register address prefix  
Program counter  
PC  
IP  
Instruction pointer  
FLAGS  
RP  
#
Flags register (D5H)  
Register pointer  
Immediate operand or register address prefix  
Hexadecimal number suffix  
Decimal number suffix  
Binary number suffix  
Opcode  
H
D
B
opc  
6-8  
S3P80C5/C80C5/C80C8  
Notation  
INSTRUCTION SET  
Table 6-4. Instruction Notation Conventions  
Description Actual Operand Range  
cc  
r
Condition code  
Working register only  
See list of condition codes in Table 6-6.  
Rn (n = 0–15)  
rb  
r0  
rr  
Bit (b) of working register  
Rn.b (n = 0–15, b = 0–7)  
Rn (n = 0–15)  
Bit 0 (LSB) of working register  
Working register pair  
RRp (p = 0, 2, 4, ..., 14)  
reg or Rn (reg = 0–255, n = 0–15)  
reg.b (reg = 0–255, b = 0–7)  
R
Register or working register  
Bit 'b' of register or working register  
Register pair or working register pair  
Rb  
RR  
reg or RRp (reg = 0–254, even number only, where  
p = 0, 2, ..., 14)  
IA  
Ir  
Indirect addressing mode  
addr (addr = 0–254, even number only)  
@Rn (n = 0–15)  
Indirect working register only  
IR  
Indirect register or indirect working register @Rn or @reg (reg = 0–255, n = 0–15)  
Irr  
Indirect working register pair only  
@RRp (p = 0, 2, ..., 14)  
IRR  
Indirect register pair or indirect working  
register pair  
@RRp or @reg (reg = 0–254, even only, where  
p = 0, 2, ..., 14)  
X
Indexed addressing mode  
#reg [Rn] (reg = 0–255, n = 0–15)  
XS  
Indexed (short offset) addressing mode  
#addr [RRp] (addr = range –128 to +127, where  
p = 0, 2, ..., 14)  
xl  
Indexed (long offset) addressing mode  
#addr [RRp] (addr = range 0–65535, where  
p = 0, 2, ..., 14)  
da  
ra  
Direct addressing mode  
Relative addressing mode  
addr (addr = range 0–65535)  
addr (addr = number in the range +127 to –128 that is  
an offset relative to the address of the next instruction)  
im  
Immediate addressing mode  
#data (data = 0–255)  
iml  
Immediate (long) addressing mode  
#data (data = range 0–65535)  
6-9  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
Table 6-5. Opcode Quick Reference  
OPCODE MAP  
LOWER NIBBLE (HEX)  
0
1
2
3
4
5
6
7
DEC  
R1  
DEC  
IR1  
ADD  
r1,r2  
ADD  
r1,Ir2  
ADD  
R2,R1  
ADD  
IR2,R1  
ADD  
R1,IM  
BOR  
r0–Rb  
U
P
P
E
R
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
RLC  
R1  
RLC  
IR1  
ADC  
r1,r2  
ADC  
r1,Ir2  
ADC  
R2,R1  
ADC  
IR2,R1  
ADC  
R1,IM  
BCP  
r1.b, R2  
INC  
R1  
INC  
IR1  
SUB  
r1,r2  
SUB  
r1,Ir2  
SUB  
R2,R1  
SUB  
IR2,R1  
SUB  
R1,IM  
BXOR  
r0–Rb  
JP  
IRR1  
SRP/0/1  
IM  
SBC  
r1,r2  
SBC  
r1,Ir2  
SBC  
R2,R1  
SBC  
IR2,R1  
SBC  
R1,IM  
BTJR  
r2.b, RA  
DA  
R1  
DA  
IR1  
OR  
r1,r2  
OR  
r1,Ir2  
OR  
R2,R1  
OR  
IR2,R1  
OR  
R1,IM  
LDB  
r0–Rb  
POP  
R1  
POP  
IR1  
AND  
r1,r2  
AND  
r1,Ir2  
AND  
R2,R1  
AND  
IR2,R1  
AND  
R1,IM  
BITC  
r1.b  
COM  
R1  
COM  
IR1  
TCM  
r1,r2  
TCM  
r1,Ir2  
TCM  
R2,R1  
TCM  
IR2,R1  
TCM  
R1,IM  
BAND  
r0–Rb  
N
I
PUSH  
R2  
PUSH  
IR2  
TM  
r1,r2  
TM  
r1,Ir2  
TM  
R2,R1  
TM  
IR2,R1  
TM  
R1,IM  
BIT  
r1.b  
DECW  
RR1  
DECW  
IR1  
PUSHUD PUSHUI  
IR1,R2  
MULT  
R2,RR1  
MULT  
IR2,RR1  
MULT  
IM,RR1  
LD  
r1, x, r2  
B
B
L
E
IR1,R2  
RL  
R1  
RL  
IR1  
POPUD  
IR2,R1  
POPUI  
IR2,R1  
DIV  
R2,RR1  
DIV  
IR2,RR1  
DIV  
IM,RR1  
LD  
r2, x, r1  
INCW  
RR1  
INCW  
IR1  
CP  
r1,r2  
CP  
r1,Ir2  
CP  
R2,R1  
CP  
IR2,R1  
CP  
R1,IM  
LDC  
r1, Irr2, xL  
CLR  
R1  
CLR  
IR1  
XOR  
r1,r2  
XOR  
r1,Ir2  
XOR  
R2,R1  
XOR  
IR2,R1  
XOR  
R1,IM  
LDC  
r2, Irr2, xL  
RRC  
R1  
RRC  
IR1  
CPIJE  
Ir,r2,RA  
LDC  
r1,Irr2  
LDW  
LDW  
LDW  
LD  
r1, Ir2  
RR2,RR1 IR2,RR1 RR1,IML  
SRA  
R1  
SRA  
IR1  
CPIJNE  
Irr,r2,RA  
LDC  
r2,Irr1  
CALL  
IA1  
LD  
IR1,IM  
LD  
Ir1, r2  
H
E
X
RR  
R1  
RR  
IR1  
LDCD  
r1,Irr2  
LDCI  
r1,Irr2  
LD  
R2,R1  
LD  
R2,IR1  
LD  
R1,IM  
LDC  
r1, Irr2, xs  
SWAP  
R1  
SWAP  
IR1  
LDCPD  
r2,Irr1  
LDCPI  
r2,Irr1  
CALL  
IRR1  
LD  
IR2,R1  
CALL  
DA1  
LDC  
r2, Irr1, xs  
6-10  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
Table 6-5. Opcode Quick Reference (Continued)  
OPCODE MAP  
LOWER NIBBLE (HEX)  
0
8
9
A
B
C
D
E
F
U
P
P
E
R
LD  
r1,R2  
LD  
r2,R1  
DJNZ  
r1,RA  
JR  
cc,RA  
LD  
r1,IM  
JP  
cc,DA  
INC  
r1  
NEXT  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
ENTER  
EXIT  
WFI  
SB0  
SB1  
IDLE  
STOP  
DI  
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
N
I
B
B
L
E
EI  
RET  
IRET  
RCF  
SCF  
CCF  
NOP  
H
E
X
LD  
r1,R2  
LD  
r2,R1  
DJNZ  
r1,RA  
JR  
cc,RA  
LD  
r1,IM  
JP  
cc,DA  
INC  
r1  
6-11  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
CONDITION CODES  
The opcode of a conditional jump always contains a 4-bit field called the condition code (cc). This specifies under  
which conditions it is to execute the jump. For example, a conditional jump with the condition code for "equal"  
after a compare operation only jumps if the two operands are equal. Condition codes are listed in Table 6-6.  
The carry (C), zero (Z), sign (S), and overflow (V) flags are used to control the operation of conditional jump  
instructions.  
Table 6-6. Condition Codes  
Binary  
Mnemonic  
Description  
Always false  
Flags Set  
0000  
1000  
F
T
Always true  
0111 (note)  
1111 (note)  
0110 (note)  
1110 (note)  
1101  
C
Carry  
C = 1  
C = 0  
Z = 1  
Z = 0  
S = 0  
S = 1  
V = 1  
V = 0  
Z = 1  
Z = 0  
NC  
Z
No carry  
Zero  
NZ  
PL  
MI  
OV  
Not zero  
Plus  
0101  
Minus  
0100  
Overflow  
1100  
NOV  
EQ  
No overflow  
Equal  
0110 (note)  
1110 (note)  
1001  
NE  
Not equal  
GE  
Greater than or equal  
Less than  
(S XOR V) = 0  
(S XOR V) = 1  
(Z OR (S XOR V)) = 0  
(Z OR (S XOR V)) = 1  
C = 0  
0001  
LT  
1010  
GT  
Greater than  
Less than or equal  
Unsigned greater than or equal  
Unsigned less than  
Unsigned greater than  
Unsigned less than or equal  
0010  
LE  
1111 (note)  
0111 (note)  
1011  
UGE  
ULT  
UGT  
ULE  
C = 1  
(C = 0 AND Z = 0) = 1  
(C OR Z) = 1  
0011  
NOTES:  
1. It indicates condition codes that are related to two different mnemonics but which test the same flag. For  
example, Z and EQ are both true if the zero flag (Z) is set, but after an ADD instruction, Z would probably be used;  
after a CP instruction, however, EQ would probably be used.  
2. For operations involving unsigned numbers, the special condition codes UGE, ULT, UGT, and ULE must be used.  
6-12  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
INSTRUCTION DESCRIPTIONS  
This section contains detailed information and programming examples for each instruction in the SAM8  
instruction set. Information is arranged in a consistent format for improved readability and for fast referencing.  
The following information is included in each instruction description:  
— Instruction name (mnemonic)  
— Full instruction name  
— Source/destination format of the instruction operand  
— Shorthand notation of the instruction's operation  
— Textual description of the instruction's effect  
— Specific flag settings affected by the instruction  
— Detailed description of the instruction's format, execution time, and addressing mode(s)  
— Programming example(s) explaining how to use the instruction  
6-13  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
ADC — Add with carry  
ADC  
dst,src  
Operation:  
dst ¬ dst + src + c  
The source operand, along with the setting of the carry flag, is added to the destination operand  
and the sum is stored in the destination. The contents of the source are unaffected. Two's-  
complement addition is performed. In multiple precision arithmetic, this instruction permits the  
carry from the addition of low-order operands to be carried into the addition of high-order  
operands.  
Flags:  
C: Set if there is a carry from the most significant bit of the result; cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and the result  
is of the opposite sign; cleared otherwise.  
D: Always cleared to "0".  
H: Set if there is a carry from the most significant bit of the low-order four bits of the result;  
cleared otherwise.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
12  
13  
r
r
r
lr  
dst  
src  
3
3
6
6
14  
15  
R
R
R
IR  
dst  
6
16  
R
IM  
Examples:  
Given: R1 = 10H, R2 = 03H, C flag = "1", register 01H = 20H, register 02H = 03H, and  
register 03H = 0AH:  
ADC R1,R2  
®
®
®
®
®
R1 = 14H, R2 = 03H  
ADC R1,@R2  
ADC 01H,02H  
ADC 01H,@02H  
ADC 01H,#11H  
R1 = 1BH, R2 = 03H  
Register 01H = 24H, register 02H = 03H  
Register 01H = 2BH, register 02H = 03H  
Register 01H = 32H  
In the first example, destination register R1 contains the value 10H, the carry flag is set to "1",  
and the source working register R2 contains the value 03H. The statement "ADC R1,R2" adds  
03H and the carry flag value ("1") to the destination value 10H, leaving 14H in register R1.  
6-14  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
ADD — Add  
ADD  
dst,src  
Operation:  
dst ¬ dst + src  
The source operand is added to the destination operand and the sum is stored in the destination.  
The contents of the source are unaffected. Two's-complement addition is performed.  
Flags:  
C: Set if there is a carry from the most significant bit of the result; cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if both operands are of the same sign and the  
result is of the opposite sign; cleared otherwise.  
D: Always cleared to "0".  
H: Set if a carry from the low-order nibble occurred.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
02  
03  
r
r
r
lr  
dst  
src  
3
3
6
6
04  
05  
R
R
R
IR  
dst  
6
06  
R
IM  
Examples:  
Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:  
ADD R1,R2  
®
®
®
®
®
R1 = 15H, R2 = 03H  
ADD R1,@R2  
ADD 01H,02H  
ADD 01H,@02H  
ADD 01H,#25H  
R1 = 1CH, R2 = 03H  
Register 01H = 24H, register 02H = 03H  
Register 01H = 2BH, register 02H = 03H  
Register 01H = 46H  
In the first example, destination working register R1 contains 12H and the source working  
register R2 contains 03H. The statement "ADD R1,R2" adds 03H to 12H, leaving the value 15H  
in register R1.  
6-15  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
AND — Logical AND  
AND  
dst,src  
Operation:  
dst ¬ dst AND src  
The source operand is logically ANDed with the destination operand. The result is stored in the  
destination. The AND operation results in a "1" bit being stored whenever the corresponding bits  
in the two operands are both logic ones; otherwise a "0" bit value is stored. The contents of the  
source are unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always cleared to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
52  
53  
r
r
r
lr  
dst  
src  
3
3
6
6
54  
55  
R
R
R
IR  
dst  
6
56  
R
IM  
Examples:  
Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:  
AND R1,R2  
®
®
®
®
®
R1 = 02H, R2 = 03H  
AND R1,@R2  
AND 01H,02H  
AND 01H,@02H  
AND 01H,#25H  
R1 = 02H, R2 = 03H  
Register 01H = 01H, register 02H = 03H  
Register 01H = 00H, register 02H = 03H  
Register 01H = 21H  
In the first example, destination working register R1 contains the value 12H and the source  
working register R2 contains 03H. The statement "AND R1,R2" logically ANDs the source  
operand 03H with the destination operand value 12H, leaving the value 02H in register R1.  
6-16  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
BAND — Bit AND  
BAND  
dst,src.b  
BAND  
dst.b,src  
Operation:  
dst(0) ¬ dst(0) AND src(b)  
or  
dst(b) ¬ dst(b) AND src(0)  
The specified bit of the source (or the destination) is logically ANDed with the zero bit (LSB) of  
the destination (or source). The resultant bit is stored in the specified bit of the destination. No  
other bits of the destination are affected. The source is unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Cleared to "0".  
V: Undefined.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
dst | b | 0  
src | b | 1  
src  
dst  
3
6
67  
r0  
Rb  
3
6
67  
Rb  
r0  
NOTE: In the second byte of the 3-byte instruction formats, the destination (or source) address is four  
bits, the bit address 'b' is three bits, and the LSB address value is one bit in length.  
Examples:  
Given: R1 = 07H and register 01H = 05H:  
BAND R1,01H.1  
BAND 01H.1,R1  
®
®
R1 = 06H, register 01H = 05H  
Register 01H = 05H, R1 = 07H  
In the first example, source register 01H contains the value 05H (00000101B) and destination  
working register R1 contains 07H (00000111B). The statement "BAND R1,01H.1" ANDs the bit 1  
value of the source register ("0") with the bit 0 value of register R1 (destination), leaving the  
value 06H (00000110B) in register R1.  
6-17  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
BCP — Bit Compare  
BCP  
dst,src.b  
Operation:  
dst(0) – src(b)  
The specified bit of the source is compared to (subtracted from) bit zero (LSB) of the destination.  
The zero flag is set if the bits are the same; otherwise it is cleared. The contents of both  
operands are unaffected by the comparison.  
Flags:  
C: Unaffected.  
Z: Set if the two bits are the same; cleared otherwise.  
S: Cleared to "0".  
V: Undefined.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
dst | b | 0  
src  
3
6
17  
r0  
Rb  
NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b'  
is three bits, and the LSB address value is one bit in length.  
Example:  
Given: R1 = 07H and register 01H = 01H:  
BCP  
R1,01H.1  
®
R1 = 07H, register 01H = 01H  
If destination working register R1 contains the value 07H (00000111B) and the source register  
01H contains the value 01H (00000001B), the statement "BCP R1,01H.1" compares bit one of  
the source register (01H) and bit zero of the destination register (R1). Because the bit values are  
not identical, the zero flag bit (Z) is cleared in the FLAGS register (0D5H).  
6-18  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
BITC — Bit Complement  
BITC  
dst.b  
Operation:  
dst(b) ¬ NOT dst(b)  
This instruction complements the specified bit within the destination without affecting any other  
bits in the destination.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Cleared to "0".  
V: Undefined.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst | b | 0  
2
4
57  
rb  
NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b'  
is three bits, and the LSB address value is one bit in length.  
Example:  
Given: R1 = 07H  
BITC R1.1  
®
R1 = 05H  
If working register R1 contains the value 07H (00000111B), the statement "BITC R1.1"  
complements bit one of the destination and leaves the value 05H (00000101B) in register R1.  
Because the result of the complement is not "0", the zero flag (Z) in the FLAGS register (0D5H)  
is cleared.  
6-19  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
BITR— Bit Reset  
BITR  
dst.b  
Operation:  
dst(b) ¬ 0  
The BITR instruction clears the specified bit within the destination without affecting any other bits  
in the destination.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst | b | 0  
2
4
77  
rb  
NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b'  
is three bits, and the LSB address value is one bit in length.  
Example:  
Given: R1 = 07H:  
BITR R1.1  
®
R1 = 05H  
If the value of working register R1 is 07H (00000111B), the statement "BITR R1.1" clears bit one  
of the destination register R1, leaving the value 05H (00000101B).  
6-20  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
BITS— Bit Set  
BITS  
dst.b  
Operation:  
dst(b) ¬ 1  
The BITS instruction sets the specified bit within the destination without affecting any other bits  
in the destination.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst | b | 1  
2
4
77  
rb  
NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b'  
is three bits, and the LSB address value is one bit in length.  
Example:  
Given: R1 = 07H:  
BITS R1.3  
®
R1 = 0FH  
If working register R1 contains the value 07H (00000111B), the statement "BITS R1.3" sets bit  
three of the destination register R1 to "1", leaving the value 0FH (00001111B).  
6-21  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
BOR— Bit OR  
BOR  
BOR  
dst,src.b  
dst.b,src  
Operation:  
dst(0) ¬ dst(0) OR src(b)  
or  
dst(b) ¬ dst(b) OR src(0)  
The specified bit of the source (or the destination) is logically ORed with bit zero (LSB) of the  
destination (or the source). The resulting bit value is stored in the specified bit of the destination.  
No other bits of the destination are affected. The source is unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Cleared to "0".  
V: Undefined.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
dst | b | 0  
src | b | 1  
src  
dst  
3
6
07  
r0  
Rb  
3
6
07  
Rb  
r0  
NOTE: In the second byte of the 3-byte instruction formats, the destination (or source) address is four  
bits, the bit address 'b' is three bits, and the LSB address value is one bit.  
Examples:  
Given: R1 = 07H and register 01H = 03H:  
BOR R1, 01H.1  
BOR 01H.2, R1  
®
®
R1 = 07H, register 01H = 03H  
Register 01H = 07H, R1 = 07H  
In the first example, destination working register R1 contains the value 07H (00000111B) and  
source register 01H the value 03H (00000011B). The statement "BOR R1,01H.1" logically ORs  
bit one of register 01H (source) with bit zero of R1 (destination). This leaves the same value  
(07H) in working register R1.  
In the second example, destination register 01H contains the value 03H (00000011B) and the  
source working register R1 the value 07H (00000111B). The statement "BOR 01H.2,R1" logically  
ORs bit two of register 01H (destination) with bit zero of R1 (source). This leaves the value 07H  
in register 01H.  
6-22  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
BTJRF — Bit Test, Jump Relative on False  
BTJRF  
dst,src.b  
Operation:  
If src(b) is a "0", then PC ¬ PC + dst  
The specified bit within the source operand is tested. If it is a "0", the relative address is added to  
the program counter and control passes to the statement whose address is now in the PC;  
otherwise, the instruction following the BTJRF instruction is executed.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
(Note 1)  
dst  
src  
opc  
src | b | 0  
dst  
3
10  
37  
RA  
rb  
NOTE: In the second byte of the instruction format, the source address is four bits, the bit address 'b' is  
three bits, and the LSB address value is one bit in length.  
Example:  
Given: R1 = 07H:  
BTJRF SKIP,R1.3  
®
PC jumps to SKIP location  
If working register R1 contains the value 07H (00000111B), the statement "BTJRF SKIP,R1.3"  
tests bit 3. Because it is "0", the relative address is added to the PC and the PC jumps to the  
memory location pointed to by the SKIP. (Remember that the memory location must be within  
the allowed range of + 127 to – 128.)  
6-23  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
BTJRT— Bit Test, Jump Relative on True  
BTJRT  
dst,src.b  
Operation:  
If src(b) is a "1", then PC ¬ PC + dst  
The specified bit within the source operand is tested. If it is a "1", the relative address is added to  
the program counter and control passes to the statement whose address is now in the PC;  
otherwise, the instruction following the BTJRT instruction is executed.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
(Note 1)  
dst  
src  
opc  
src | b | 1  
dst  
3
10  
37  
RA  
rb  
NOTE: In the second byte of the instruction format, the source address is four bits, the bit address 'b' is  
three bits, and the LSB address value is one bit in length.  
Example:  
Given: R1 = 07H:  
BTJRT  
SKIP,R1.1  
If working register R1 contains the value 07H (00000111B), the statement "BTJRT SKIP,R1.1"  
tests bit one in the source register (R1). Because it is a "1", the relative address is added to the  
PC and the PC jumps to the memory location pointed to by the SKIP. (Remember that the  
memory location must be within the allowed range of + 127 to – 128.)  
6-24  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
BXOR— Bit XOR  
BXOR  
BXOR  
dst,src.b  
dst.b,src  
Operation:  
dst(0) ¬ dst(0) XOR src(b)  
or  
dst(b) ¬ dst(b) XOR src(0)  
The specified bit of the source (or the destination) is logically exclusive-ORed with bit zero (LSB)  
of the destination (or source). The result bit is stored in the specified bit of the destination. No  
other bits of the destination are affected. The source is unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Cleared to "0".  
V: Undefined.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
dst | b | 0  
src | b | 1  
src  
dst  
3
6
27  
r0  
Rb  
3
6
27  
Rb  
r0  
NOTE: In the second byte of the 3-byte instruction formats, the destination (or source) address is four  
bits, the bit address 'b' is three bits, and the LSB address value is one bit in length.  
Examples:  
Given: R1 = 07H (00000111B) and register 01H = 03H (00000011B):  
BXOR R1,01H.1  
BXOR 01H.2,R1  
®
®
R1 = 06H, register 01H = 03H  
Register 01H = 07H, R1 = 07H  
In the first example, destination working register R1 has the value 07H (00000111B) and source  
register 01H has the value 03H (00000011B). The statement "BXOR R1,01H.1" exclusive-ORs  
bit one of register 01H (source) with bit zero of R1 (destination). The result bit value is stored in  
bit zero of R1, changing its value from 07H to 06H. The value of source register 01H is  
unaffected.  
6-25  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
CALL— Call Procedure  
CALL  
dst  
Operation:  
SP  
@SP  
SP  
@SP  
PC  
¬
¬
¬
¬
¬
SP – 1  
PCL  
SP –1  
PCH  
dst  
The current contents of the program counter are pushed onto the top of the stack. The program  
counter value used is the address of the first instruction following the CALL instruction. The  
specified destination address is then loaded into the program counter and points to the first  
instruction of a procedure. At the end of the procedure the return instruction (RET) can be used  
to return to the original program flow. RET pops the top of the stack back into the program  
counter.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
opc  
opc  
dst  
3
14  
F6  
F4  
D4  
DA  
IRR  
IA  
dst  
dst  
2
2
12  
14  
Examples:  
Given: R0 = 35H, R1 = 21H, PC = 1A47H, and SP = 0002H:  
CALL 3521H ®  
SP = 0000H  
(Memory locations 0000H = 1AH, 0001H = 4AH, where  
4AH is the address that follows the instruction.)  
SP = 0000H (0000H = 1AH, 0001H = 49H)  
SP = 0000H (0000H = 1AH, 0001H = 49H)  
CALL @RR0 ®  
CALL #40H  
®
In the first example, if the program counter value is 1A47H and the stack pointer contains the  
value 0002H, the statement "CALL 3521H" pushes the current PC value onto the top of the  
stack. The stack pointer now points to memory location 0000H. The PC is then loaded with the  
value 3521H, the address of the first instruction in the program sequence to be executed.  
If the contents of the program counter and stack pointer are the same as in the first example, the  
statement "CALL @RR0" produces the same result except that the 49H is stored in stack  
location 0001H (because the two-byte instruction format was used). The PC is then loaded with  
the value 3521H, the address of the first instruction in the program sequence to be executed.  
Assuming that the contents of the program counter and stack pointer are the same as in the first  
example, if program address 0040H contains 35H and program address 0041H contains 21H, the  
statement "CALL #40H" produces the same result as in the second example.  
6-26  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
CCF— Complement Carry Flag  
CCF  
Operation:  
C ¬ NOT C  
The carry flag (C) is complemented. If C = "1", the value of the carry flag is changed to logic  
zero; if C = "0", the value of the carry flag is changed to logic one.  
Flags:  
C: Complemented.  
No other flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
EF  
Example:  
Given: The carry flag = "0":  
CCF  
If the carry flag = "0", the CCF instruction complements it in the FLAGS register (0D5H),  
changing its value from logic zero to logic one.  
6-27  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
CLR— Clear  
CLR  
dst  
Operation:  
dst ¬ "0"  
The destination location is cleared to "0".  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
B0  
R
B1  
IR  
Examples:  
Given: Register 00H = 4FH, register 01H = 02H, and register 02H = 5EH:  
CLR  
CLR  
00H  
®
Register 00H = 00H  
@01H ®  
Register 01H = 02H, register 02H = 00H  
In Register (R) addressing mode, the statement "CLR 00H" clears the destination register 00H  
value to 00H. In the second example, the statement "CLR @01H" uses Indirect Register (IR)  
addressing mode to clear the 02H register value to 00H.  
6-28  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
COM— Complement  
COM  
dst  
Operation:  
dst ¬ NOT dst  
The contents of the destination location are complemented (one's complement); all "1s" are  
changed to "0s", and vice-versa.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always reset to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
60  
61  
R
IR  
Examples:  
Given: R1 = 07H and register 07H = 0F1H:  
COM R1  
®
®
R1 = 0F8H  
R1 = 07H, register 07H = 0EH  
COM @R1  
In the first example, destination working register R1 contains the value 07H (00000111B). The  
statement "COM R1" complements all the bits in R1: all logic ones are changed to logic zeros,  
and vice-versa, leaving the value 0F8H (11111000B).  
In the second example, Indirect Register (IR) addressing mode is used to complement the value  
of destination register 07H (11110001B), leaving the new value 0EH (00001110B).  
6-29  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
CP— Compare  
CP  
dst,src  
Operation:  
dst – src  
The source operand is compared to (subtracted from) the destination operand, and the  
appropriate flags are set accordingly. The contents of both operands are unaffected by the  
comparison.  
Flags:  
C: Set if a "borrow" occurred (src > dst); cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
dst |  
src  
2
4
6
A2  
r
r
A3  
r
lr  
opc  
opc  
src  
dst  
dst  
src  
3
3
6
6
A4  
A5  
R
R
R
IR  
6
A6  
R
IM  
Examples:  
1. Given: R1 = 02H and R2 = 03H:  
CP R1,R2 ® Set the C and S flags  
Destination working register R1 contains the value 02H and source register R2 contains the  
value 03H. The statement "CP R1,R2" subtracts the R2 value (source/subtrahend) from the R1  
value (destination/minuend). Because a "borrow" occurs and the difference is negative, C and S  
are "1".  
2. Given: R1 = 05H and R2 = 0AH:  
CP  
JP  
INC  
R1,R2  
UGE,SKIP  
R1  
SKIP LD  
R3,R1  
In this example, destination working register R1 contains the value 05H which is less than the  
contents of the source working register R2 (0AH). The statement "CP R1,R2" generates C = "1"  
and the JP instruction does not jump to the SKIP location. After the statement "LD R3,R1"  
executes, the value 06H remains in working register R3.  
6-30  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
CPIJE— Compare, Increment, and Jump on Equal  
CPIJE  
dst,src,RA  
Operation:  
If dst – src = "0", PC ¬ PC + RA  
Ir ¬ Ir + 1  
The source operand is compared to (subtracted from) the destination operand. If the result is "0",  
the relative address is added to the program counter and control passes to the statement whose  
address is now in the program counter. Otherwise, the instruction immediately following the  
CPIJE instruction is executed. In either case, the source pointer is incremented by one before  
the next instruction is executed.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
src dst  
RA  
3
12  
C2  
r
Ir  
NOTE: Execution time is 18 cycles if the jump is taken or 16 cycles if it is not taken.  
Example:  
Given: R1 = 02H, R2 = 03H, and register 03H = 02H:  
CPIJE R1,@R2,SKIP ®  
R2 = 04H, PC jumps to SKIP location  
In this example, working register R1 contains the value 02H, working register R2 the value 03H,  
and register 03 contains 02H. The statement "CPIJE R1,@R2,SKIP" compares the @R2 value  
02H (00000010B) to 02H (00000010B). Because the result of the comparison is equal, the  
relative address is added to the PC and the PC then jumps to the memory location pointed to by  
SKIP. The source register (R2) is incremented by one, leaving a value of 04H. (Remember that  
the memory location must be within the allowed range of + 127 to – 128.)  
6-31  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
CPIJNE— Compare, Increment, and Jump on Non-Equal  
CPIJNE  
dst,src,RA  
Operation:  
If dst – src "0", PC ¬ PC + RA  
Ir ¬ Ir + 1  
The source operand is compared to (subtracted from) the destination operand. If the result is not  
"0", the relative address is added to the program counter and control passes to the statement  
whose address is now in the program counter; otherwise the instruction following the CPIJNE  
instruction is executed. In either case the source pointer is incremented by one before the next  
instruction.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
src dst  
RA  
3
12  
D2  
r
Ir  
NOTE: Execution time is 18 cycles if the jump is taken or 16 cycles if it is not taken.  
Example:  
Given: R1 = 02H, R2 = 03H, and register 03H = 04H:  
CPIJNE  
R1,@R2,SKIP ®  
R2 = 04H, PC jumps to SKIP location  
Working register R1 contains the value 02H, working register R2 (the source pointer) the value  
03H, and general register 03 the value 04H. The statement "CPIJNE R1,@R2,SKIP" subtracts  
04H (00000100B) from 02H (00000010B). Because the result of the comparison is non-equal,  
the relative address is added to the PC and the PC then jumps to the memory location pointed to  
by SKIP. The source pointer register (R2) is also incremented by one, leaving a value of 04H.  
(Remember that the memory location must be within the allowed range of + 127 to – 128.)  
6-32  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
DA— Decimal Adjust  
DA  
dst  
Operation:  
dst ¬ DA dst  
The destination operand is adjusted to form two 4-bit BCD digits following an addition or  
subtraction operation. For addition (ADD, ADC) or subtraction (SUB, SBC), the following table  
indicates the operation performed. (The operation is undefined if the destination operand was not  
the result of a valid addition or subtraction of BCD digits):  
Instruction  
Carry  
Before DA  
Bits 4–7  
Value (Hex)  
H Flag  
Before DA  
Bits 0–3  
Value (Hex)  
Number Added  
to Byte  
Carry  
After DA  
0
0
0
0
0
0
1
1
1
0
0
1
1
0–9  
0–8  
0–9  
A–F  
9–F  
A–F  
0–2  
0–2  
0–3  
0–9  
0–8  
7–F  
6–F  
0
0
1
0
0
1
0
0
1
0
1
0
1
0–9  
A–F  
0–3  
0–9  
A–F  
0–3  
0–9  
A–F  
0–3  
0–9  
6–F  
0–9  
6–F  
00  
0
0
0
1
1
1
1
1
1
0
0
1
1
06  
06  
ADD  
ADC  
60  
66  
66  
60  
66  
66  
00 = – 00  
FA = – 06  
A0 = – 60  
9A = – 66  
SUB  
SBC  
Flags:  
C: Set if there was a carry from the most significant bit; cleared otherwise (see table).  
Z: Set if result is "0"; cleared otherwise.  
S: Set if result bit 7 is set; cleared otherwise.  
V: Undefined.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
40  
41  
R
IR  
6-33  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
DA— Decimal Adjust  
DA  
(Continued)  
Example:  
Given: Working register R0 contains the value 15 (BCD), working register R1 contains  
27 (BCD), and address 27H contains 46 (BCD):  
ADD  
DA  
R1,R0  
R1  
;
;
C ¬ "0", H ¬ "0", Bits 4–7 = 3, bits 0–3 = C, R1 ¬ 3CH  
R1 ¬ 3CH + 06  
If addition is performed using the BCD values 15 and 27, the result should be 42. The sum is  
incorrect, however, when the binary representations are added in the destination location using  
standard binary arithmetic:  
0 0 0 1 0 1 0 1  
+ 0 0 1 0 0 1 1 1  
15  
27  
0 0 1 1 1 1 0 0  
=
3CH  
The DA instruction adjusts this result so that the correct BCD representation is obtained:  
0 0 1 1 1 1 0 0  
+ 0 0 0 0 0 1 1 0  
0 1 0 0 0 0 1 0  
=
42  
Assuming the same values given above, the statements  
SUB  
DA  
27H,R0 ;  
@R1  
C ¬ "0", H ¬ "0", Bits 4–7 = 3, bits 0–3 = 1  
@R1 ¬ 31–0  
;
leave the value 31 (BCD) in address 27H (@R1).  
6-34  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
DEC— Decrement  
DEC  
dst  
Operation:  
dst ¬ dst – 1  
The contents of the destination operand are decremented by one.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
00  
01  
R
IR  
Examples:  
Given: R1 = 03H and register 03H = 10H:  
DEC R1  
®
®
R1 = 02H  
DEC @R1  
Register 03H = 0FH  
In the first example, if working register R1 contains the value 03H, the statement "DEC R1"  
decrements the hexadecimal value by one, leaving the value 02H. In the second example, the  
statement "DEC @R1" decrements the value 10H contained in the destination register 03H by  
one, leaving the value 0FH.  
6-35  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
DECW— Decrement Word  
DECW  
dst  
Operation:  
dst ¬ dst – 1  
The contents of the destination location (which must be an even address) and the operand  
following that location are treated as a single 16-bit value that is decremented by one.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
8
8
80  
81  
RR  
IR  
Examples:  
Given: R0 = 12H, R1 = 34H, R2 = 30H, register 30H = 0FH, and register 31H = 21H:  
DECW RR0  
DECW @R2  
®
®
R0 = 12H, R1 = 33H  
Register 30H = 0FH, register 31H = 20H  
In the first example, destination register R0 contains the value 12H and register R1 the value  
34H. The statement "DECW RR0" addresses R0 and the following operand R1 as a 16-bit word  
and decrements the value of R1 by one, leaving the value 33H.  
NOTE:  
A system malfunction may occur if you use a Zero flag (FLAGS.6) result together with a DECW  
instruction. To avoid this problem, we recommend that you use DECW as shown in the following  
example:  
LOOP: DECW RR0  
LD  
OR  
JR  
R2,R1  
R2,R0  
NZ,LOOP  
6-36  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
DI— Disable Interrupts  
DI  
Operation:  
SYM (0) ¬ 0  
Bit zero of the system mode control register, SYM.0, is cleared to "0", globally disabling all  
interrupt processing. Interrupt requests will continue to set their respective interrupt pending bits,  
but the CPU will not service them while interrupt processing is disabled.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
8F  
Example:  
Given: SYM = 01H:  
DI  
If the value of the SYM register is 01H, the statement "DI" leaves the new value 00H in the  
register and clears SYM.0 to "0", disabling interrupt processing.  
Before changing IMR, interrupt pending and interrupt source control register, be sure DI state.  
6-37  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
DIV— Divide (Unsigned)  
DIV  
dst,src  
Operation:  
dst ÷ src  
dst (UPPER) ¬ REMAINDER  
dst (LOWER) ¬ QUOTIENT  
The destination operand (16 bits) is divided by the source operand (8 bits). The quotient (8 bits)  
is stored in the lower half of the destination. The remainder (8 bits) is stored in the upper half of  
8
the destination. When the quotient is ³ 2 , the numbers stored in the upper and lower halves of  
the destination for quotient and remainder are incorrect. Both operands are treated as unsigned  
integers.  
Flags:  
C: Set if the V flag is set and quotient is between 28 and 29 –1; cleared otherwise.  
Z: Set if divisor or quotient = "0"; cleared otherwise.  
S: Set if MSB of quotient = "1"; cleared otherwise.  
V: Set if quotient is ³ 28 or if divisor = "0"; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
RR  
RR  
RR  
src  
opc  
src  
dst  
3
26/10  
26/10  
26/10  
94  
95  
96  
R
IR  
IM  
NOTE: Execution takes 10 cycles if the divide-by-zero is attempted; otherwise it takes 26 cycles.  
Examples:  
Given: R0 = 10H, R1 = 03H, R2 = 40H, register 40H = 80H:  
DIV  
DIV  
DIV  
RR0,R2  
®
®
®
R0 = 03H, R1 = 40H  
R0 = 03H, R1 = 20H  
R0 = 03H, R1 = 80H  
RR0,@R2  
RR0,#20H  
In the first example, destination working register pair RR0 contains the values 10H (R0) and 03H  
(R1), and register R2 contains the value 40H. The statement "DIV RR0,R2" divides the 16-bit  
RR0 value by the 8-bit value of the R2 (source) register. After the DIV instruction, R0 contains  
the value 03H and R1 contains 40H. The 8-bit remainder is stored in the upper half of the  
destination register RR0 (R0) and the quotient in the lower half (R1).  
6-38  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
DJNZ— Decrement and Jump if Non-Zero  
DJNZ  
r,dst  
Operation:  
r ¬ r – 1  
If r ¹ 0, PC ¬ PC + dst  
The working register being used as a counter is decremented. If the contents of the register are  
not logic zero after decrementing, the relative address is added to the program counter and  
control passes to the statement whose address is now in the PC. The range of the relative  
address is +127 to –128, and the original value of the PC is taken to be the address of the  
instruction byte following the DJNZ statement.  
NOTE: In case of using DJNZ instruction, the working register being used as a counter should be set at  
the one of location 0C0H to 0CFH with SRP, SRP0, or SRP1 instruction.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
r | opc  
dst  
2
8 (jump taken)  
8 (no jump)  
rA  
RA  
r = 0 to F  
Example:  
Given: R1 = 02H and LOOP is the label of a relative address:  
SRP  
#0C0H  
DJNZ R1,LOOP  
DJNZ is typically used to control a "loop" of instructions. In many cases, a label is used as the  
destination operand instead of a numeric relative address value. In the example, working register  
R1 contains the value 02H, and LOOP is the label for a relative address.  
The statement "DJNZ R1, LOOP" decrements register R1 by one, leaving the value 01H.  
Because the contents of R1 after the decrement are non-zero, the jump is taken to the relative  
address specified by the LOOP label.  
6-39  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
EI— Enable Interrupts  
EI  
Operation:  
SYM (0) ¬ 1  
An EI instruction sets bit zero of the system mode register, SYM.0 to "1". This allows interrupts to  
be serviced as they occur (assuming they have highest priority). If an interrupt's pending bit was  
set while interrupt processing was disabled (by executing a DI instruction), it will be serviced  
when you execute the EI instruction.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
9F  
Example:  
Given: SYM = 00H:  
EI  
If the SYM register contains the value 00H, that is, if interrupts are currently disabled, the  
statement "EI" sets the SYM register to 01H, enabling all interrupts. (SYM.0 is the enable bit for  
global interrupt processing.)  
6-40  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
ENTER— Enter  
ENTER  
Operation:  
SP  
@SP  
IP  
¬
¬
¬
¬
¬
SP – 2  
IP  
PC  
PC  
IP  
@IP  
IP + 2  
This instruction is useful when implementing threaded-code languages. The contents of the  
instruction pointer are pushed to the stack. The program counter (PC) value is then written to the  
instruction pointer. The program memory word that is pointed to by the instruction pointer is  
loaded into the PC, and the instruction pointer is incremented by two.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
14  
1F  
Example:  
The diagram below shows one example of how to use an ENTER statement.  
Before  
After  
Data  
Address  
IP  
Data  
Address  
IP  
0050  
0040  
0022  
0043  
0110  
0020  
Address  
Data  
1F  
Address  
40 Enter  
Data  
1F  
PC  
SP  
40 Enter  
PC  
SP  
41 Address H 01  
42 Address L 10  
43 Address H  
41 Address H 01  
42 Address L 10  
43 Address H  
20  
21  
22  
00  
50  
IPH  
IPL  
Data  
110 Routine  
Memory  
Memory  
22  
Data  
Stack  
Stack  
6-41  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
EXIT— Exit  
EXIT  
Operation:  
IP  
¬
¬
¬
¬
@SP  
SP  
PC  
IP  
SP + 2  
@IP  
IP + 2  
This instruction is useful when implementing threaded-code languages. The stack value is  
popped and loaded into the instruction pointer. The program memory word that is pointed to by  
the instruction pointer is then loaded into the program counter, and the instruction pointer is  
incremented by two.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode (Hex)  
opc  
1
14 (internal stack)  
16 (internal stack)  
2F  
Example:  
The diagram below shows one example of how to use an EXIT statement.  
Before  
After  
Data  
Address  
IP  
Data  
Address  
IP  
0050  
0040  
0022  
0052  
0060  
0022  
Address  
Data  
Address  
Data  
PC  
SP  
PC  
SP  
50 PCL old  
51 PCH  
60  
00  
60  
Main  
140 Exit  
2F  
20  
21  
22  
IPH  
IPL  
Data  
00  
50  
Memory  
Memory  
Data  
22  
Stack  
Stack  
6-42  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
IDLE— Idle Operation  
IDLE  
Operation:  
The IDLE instruction stops the CPU clock while allowing system clock oscillation to continue. Idle  
mode can be released by an interrupt request (IRQ) or an external reset operation.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
1
4
6F  
Example:  
The instruction  
IDLE  
stops the CPU clock but not the system clock.  
6-43  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
INC— Increment  
INC  
dst  
Operation:  
dst ¬ dst + 1  
The contents of the destination operand are incremented by one.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
dst | opc  
opc  
1
4
rE  
r
r = 0 to F  
dst  
2
4
4
20  
21  
R
IR  
Examples:  
Given: R0 = 1BH, register 00H = 0CH, and register 1BH = 0FH:  
INC  
INC  
INC  
R0  
®
®
®
R0 = 1CH  
00H  
@R0  
Register 00H = 0DH  
R0 = 1BH, register 01H = 10H  
In the first example, if destination working register R0 contains the value 1BH, the statement  
"INC R0" leaves the value 1CH in that same register.  
The next example shows the effect an INC instruction has on register 00H, assuming that it  
contains the value 0CH.  
In the third example, INC is used in Indirect Register (IR) addressing mode to increment the  
value of register 1BH from 0FH to 10H.  
6-44  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
INCW— Increment Word  
INCW  
dst  
Operation:  
dst ¬ dst + 1  
The contents of the destination (which must be an even address) and the byte following that  
location are treated as a single 16-bit value that is incremented by one.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
8
8
A0  
A1  
RR  
IR  
Examples:  
Given: R0 = 1AH, R1 = 02H, register 02H = 0FH, and register 03H = 0FFH:  
INCW RR0  
INCW @R1  
®
®
R0 = 1AH, R1 = 03H  
Register 02H = 10H, register 03H = 00H  
In the first example, the working register pair RR0 contains the value 1AH in register R0 and 02H  
in register R1. The statement "INCW RR0" increments the 16-bit destination by one, leaving the  
value 03H in register R1. In the second example, the statement "INCW @R1" uses Indirect  
Register (IR) addressing mode to increment the contents of general register 03H from 0FFH to  
00H and register 02H from 0FH to 10H.  
NOTE:  
A system malfunction may occur if you use a Zero (Z) flag (FLAGS.6) result together with an  
INCW instruction. To avoid this problem, we recommend that you use INCW as shown in the  
following example:  
LOOP:  
INCW  
LD  
OR  
RR0  
R2,R1  
R2,R0  
NZ,LOOP  
JR  
6-45  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
IRET— Interrupt Return  
IRET  
IRET (Normal)  
IRET (Fast)  
Operation:  
FLAGS ¬ @SP  
SP ¬ SP + 1  
PC ¬ @SP  
PC « IP  
FLAGS ¬ FLAGS'  
FIS ¬  
0
SP ¬ SP + 2  
SYM(0) ¬  
1
This instruction is used at the end of an interrupt service routine. It restores the flag register and  
the program counter. It also re-enables global interrupts. A "normal IRET" is executed only if the  
fast interrupt status bit (FIS, bit one of the FLAGS register, 0D5H) is cleared (= "0"). If a fast  
interrupt occurred, IRET clears the FIS bit that was set at the beginning of the service routine.  
Flags:  
All flags are restored to their original settings (that is, the settings before the interrupt occurred).  
Format:  
Bytes  
Cycles  
Opcode (Hex)  
IRET  
(Normal)  
opc  
1
10 (internal stack)  
12 (internal stack)  
BF  
Bytes  
Cycles  
Opcode (Hex)  
IRET  
(Fast)  
opc  
1
6
BF  
Example:  
In the figure below, the instruction pointer is initially loaded with 100H in the main program  
before interrupts are enabled. When an interrupt occurs, the program counter and instruction  
pointer are swapped. This causes the PC to jump to address 100H and the IP to keep the return  
address. The last instruction in the service routine normally is a jump to IRET at address FFH.  
This causes the instruction pointer to be loaded with 100H "again" and the program counter to  
jump back to the main program. Now, the next interrupt can occur and the IP is still correct at  
100H.  
0H  
FFH  
IRET  
100H  
Interrupt  
Service  
Routine  
JP to FFH  
FFFFH  
NOTE:  
In the fast interrupt example above, if the last instruction is not a jump to IRET, you must pay  
attention to the order of the last two instructions. The IRET cannot be immediately proceeded by  
a clearing of the interrupt status (as with a reset of the IPR register).  
6-46  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
JP— Jump  
JP  
cc,dst  
(Conditional)  
JP  
dst  
(Unconditional)  
Operation:  
If cc is true, PC ¬ dst  
The conditional JUMP instruction transfers program control to the destination address if the  
condition specified by the condition code (cc) is true; otherwise, the instruction following the JP  
instruction is executed. The unconditional JP simply replaces the contents of the PC with the  
contents of the specified register pair. Control then passes to the statement addressed by the  
PC.  
Flags:  
No flags are affected.  
Format: (1)  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
(2)  
cc | opc  
dst  
3
8
ccD  
DA  
cc = 0 to F  
opc  
dst  
2
8
30  
IRR  
NOTES:  
1. The 3-byte format is used for a conditional jump and the 2-byte format for an unconditional jump.  
2. In the first byte of the three-byte instruction format (conditional jump), the condition code and the  
opcode are both four bits.  
Examples:  
Given: The carry flag (C) = "1", register 00 = 01H, and register 01 = 20H:  
JP  
JP  
C,LABEL_W  
@00H  
®
®
LABEL_W = 1000H, PC = 1000H  
PC = 0120H  
The first example shows a conditional JP. Assuming that the carry flag is set to "1", the  
statement  
"JP C,LABEL_W" replaces the contents of the PC with the value 1000H and transfers control to  
that location. Had the carry flag not been set, control would then have passed to the statement  
immediately following the JP instruction.  
The second example shows an unconditional JP. The statement "JP @00" replaces the contents  
of the PC with the contents of the register pair 00H and 01H, leaving the value 0120H.  
6-47  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
JR— Jump Relative  
JR  
cc,dst  
Operation:  
If cc is true, PC ¬ PC + dst  
If the condition specified by the condition code (cc) is true, the relative address is added to the  
program counter and control passes to the statement whose address is now in the program  
counter; otherwise, the instruction following the JR instruction is executed. (See list of condition  
codes).  
The range of the relative address is +127, –128, and the original value of the program counter is  
taken to be the address of the first instruction byte following the JR statement.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
(1)  
cc | opc  
dst  
2
6
ccB  
RA  
cc = 0 to F  
NOTE: In the first byte of the two-byte instruction format, the condition code and the opcode are each  
four bits.  
Example:  
Given: The carry flag = "1" and LABEL_X = 1FF7H:  
JR  
C,LABEL_X  
®
PC = 1FF7H  
If the carry flag is set (that is, if the condition code is true), the statement "JR C,LABEL_X" will  
pass control to the statement whose address is now in the PC. Otherwise, the program  
instruction following the JR would be executed.  
6-48  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
LD— Load  
LD  
dst,src  
Operation:  
dst ¬ src  
The contents of the source are loaded into the destination. The source's contents are unaffected.  
No flags are affected.  
Flags:  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
IM  
R
dst | opc  
src | opc  
opc  
src  
dst  
2
4
4
rC  
r8  
r
r
2
2
3
3
4
r9  
R
r
r = 0 to F  
dst | src  
4
4
C7  
D7  
r
lr  
r
Ir  
opc  
src  
dst  
src  
6
6
E4  
E5  
R
R
R
IR  
opc  
dst  
6
6
E6  
D6  
R
IM  
IM  
IR  
opc  
opc  
opc  
src  
dst  
x
3
3
3
6
6
6
F5  
87  
97  
IR  
r
R
x [r]  
r
dst | src  
src | dst  
x
x [r]  
6-49  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
LD— Load  
LD  
(Continued)  
Examples:  
Given: R0 = 01H, R1 = 0AH, register 00H = 01H, register 01H = 20H,  
register 02H = 02H, LOOP = 30H, and register 3AH = 0FFH:  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
R0,#10H  
R0,01H  
®
®
®
®
®
®
®
®
®
®
R0 = 10H  
R0 = 20H, register 01H = 20H  
Register 01H = 01H, R0 = 01H  
R1 = 20H, R0 = 01H  
01H,R0  
R1,@R0  
@R0,R1  
00H,01H  
02H,@00H  
00H,#0AH  
@00H,#10H  
@00H,02H  
R0 = 01H, R1 = 0AH, register 01H = 0AH  
Register 00H = 20H, register 01H = 20H  
Register 02H = 20H, register 00H = 01H  
Register 00H = 0AH  
Register 00H = 01H, register 01H = 10H  
Register 00H = 01H, register 01H = 02, register 02H = 02H  
R0 = 0FFH, R1 = 0AH  
R0,#LOOP[R1] ®  
#LOOP[R0],R1 ®  
Register 31H = 0AH, R0 = 01H, R1 = 0AH  
6-50  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
LDB— Load Bit  
LDB  
dst,src.b  
LDB  
dst.b,src  
Operation:  
dst(0) ¬ src(b)  
or  
dst(b) ¬ src(0)  
The specified bit of the source is loaded into bit zero (LSB) of the destination, or bit zero of the  
source is loaded into the specified bit of the destination. No other bits of the destination are  
affected. The source is unaffected.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
dst | b | 0  
src | b | 1  
src  
dst  
3
6
47  
r0  
Rb  
3
6
47  
Rb  
r0  
NOTE: In the second byte of the instruction formats, the destination (or source) address is four bits, the  
bit address 'b' is three bits, and the LSB address value is one bit in length.  
Examples:  
Given: R0 = 06H and general register 00H = 05H:  
LDB  
LDB  
R0,00H.2  
00H.0,R0  
®
®
R0 = 07H, register 00H = 05H  
R0 = 06H, register 00H = 04H  
In the first example, destination working register R0 contains the value 06H and the source  
general register 00H the value 05H. The statement "LD R0,00H.2" loads the bit two value of the  
00H register into bit zero of the R0 register, leaving the value 07H in register R0.  
In the second example, 00H is the destination register. The statement "LD 00H.0,R0" loads bit  
zero of register R0 to the specified bit (bit zero) of the destination register, leaving 04H in  
general register 00H.  
6-51  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
LDC/LDE— Load Memory  
LDC/LDE  
dst,src  
Operation:  
dst ¬ src  
This instruction loads a byte from program or data memory into a working register or vice-versa.  
The source values are unaffected. LDC refers to program memory and LDE to data memory.  
The assembler makes 'Irr' or 'rr' values an even number for program memory and odd an odd  
number for data memory.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
1.  
2.  
3.  
4.  
5.  
opc  
opc  
opc  
opc  
opc  
dst | src  
src | dst  
dst | src  
src | dst  
dst | src  
2
10  
C3  
D3  
E7  
F7  
A7  
r
Irr  
2
3
3
4
10  
12  
12  
14  
Irr  
r
XS  
XS  
r
XS [rr]  
r
XS [rr]  
r
XLL  
XLH  
XLH  
DAH  
DAH  
DAH  
DAH  
XL [rr]  
XLL  
DAL  
DAL  
DAL  
DAL  
6.  
7.  
8.  
9.  
opc  
opc  
opc  
opc  
src | dst  
dst | 0000  
src | 0000  
dst | 0001  
src | 0001  
4
4
4
4
4
14  
14  
14  
14  
14  
B7  
A7  
B7  
A7  
B7  
XL [rr]  
r
DA  
r
r
DA  
r
DA  
r
10.  
opc  
DA  
NOTES:  
1. The source (src) or working register pair [rr] for formats 5 and 6 cannot use register pair 0–1.  
2. For formats 3 and 4, the destination address 'XS [rr]' and the source address 'XS [rr]' are each one  
byte.  
3. For formats 5 and 6, the destination address 'XL [rr] and the source address 'XL [rr]' are each two  
bytes.  
4. The DA and r source values for formats 7 and 8 are used to address program memory; the second set  
of values, used in formats 9 and 10, are used to address data memory.  
6-52  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
LDC/LDE— Load Memory  
LDC/LDE  
(Continued)  
Examples:  
Given: R0 = 11H, R1 = 34H, R2 = 01H, R3 = 04H; Program memory locations  
0103H = 4FH, 0104H = 1A, 0105H = 6DH, and 1104H = 88H. External data memory  
locations 0103H = 5FH, 0104H = 2AH, 0105H = 7DH, and 1104H = 98H:  
LDC  
R0,@RR2  
; R0 ¬ contents of program memory location 0104H  
; R0 = 1AH, R2 = 01H, R3 = 04H  
LDE  
R0,@RR2  
; R0 ¬ contents of external data memory location 0104H  
; R0 = 2AH, R2 = 01H, R3 = 04H  
LDC (note) @RR2,R0  
; 11H (contents of R0) is loaded into program memory  
; location 0104H (RR2),  
; working registers R0, R2, R3 ® no change  
LDE  
LDC  
LDE  
@RR2,R0  
; 11H (contents of R0) is loaded into external data memory  
; location 0104H (RR2),  
; working registers R0, R2, R3 ® no change  
R0,#01H[RR2]  
R0,#01H[RR2]  
; R0 ¬ contents of program memory location 0105H  
; (01H + RR2),  
; R0 = 6DH, R2 = 01H, R3 = 04H  
; R0 ¬ contents of external data memory location 0105H  
; (01H + RR2), R0 = 7DH, R2 = 01H, R3 = 04H  
LDC (note) #01H[RR2],R0  
; 11H (contents of R0) is loaded into program memory location  
; 0105H (01H + 0104H)  
LDE  
LDC  
LDE  
#01H[RR2],R0  
; 11H (contents of R0) is loaded into external data memory  
; location 0105H (01H + 0104H)  
R0,#1000H[RR2] ; R0 ¬ contents of program memory location 1104H  
; (1000H + 0104H), R0 = 88H, R2 = 01H, R3 = 04H  
R0,#1000H[RR2] ; R0 ¬ contents of external data memory location 1104H  
; (1000H + 0104H), R0 = 98H, R2 = 01H, R3 = 04H  
LDC  
LDE  
R0,1104H  
R0,1104H  
; R0 ¬ contents of program memory location 1104H, R0 = 88H  
; R0 ¬ contents of external data memory location 1104H,  
; R0 = 98H  
LDC (note) 1105H,R0  
; 11H (contents of R0) is loaded into program memory location  
; 1105H, (1105H) ¬ 11H  
LDE  
1105H,R0  
; 11H (contents of R0) is loaded into external data memory  
; location 1105H, (1105H) ¬ 11H  
NOTE: These instructions are not supported by masked ROM type devices.  
6-53  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
LDCD/LDED— Load Memory and Decrement  
LDCD/LDED dst,src  
Operation:  
dst ¬ src  
rr ¬ rr – 1  
These instructions are used for user stacks or block transfers of data from program or data  
memory to the register file. The address of the memory location is specified by a working register  
pair. The contents of the source location are loaded into the destination location. The memory  
address is then decremented. The contents of the source are unaffected.  
LDCD references program memory and LDED references external data memory. The assembler  
makes 'Irr' an even number for program memory and an odd number for data memory.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
dst | src  
2
10  
E2  
r
Irr  
Examples:  
Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory location 1033H = 0CDH, and  
external data memory location 1033H = 0DDH:  
LDCD  
R8,@RR6  
; 0CDH (contents of program memory location 1033H) is loaded  
; into R8 and RR6 is decremented by one  
; R8 = 0CDH, R6 = 10H, R7 = 32H (RR6 ¬ RR6 – 1)  
LDED  
R8,@RR6  
; 0DDH (contents of data memory location 1033H) is loaded  
; into R8 and RR6 is decremented by one (RR6 ¬ RR6 – 1)  
; R8 = 0DDH, R6 = 10H, R7 = 32H  
6-54  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
LDCI/LDEI— Load Memory and Increment  
LDCI/LDEI  
dst,src  
Operation:  
dst ¬ src  
rr ¬ rr + 1  
These instructions are used for user stacks or block transfers of data from program or data  
memory to the register file. The address of the memory location is specified by a working register  
pair. The contents of the source location are loaded into the destination location. The memory  
address is then incremented automatically. The contents of the source are unaffected.  
LDCI refers to program memory and LDEI refers to external data memory. The assembler  
makes 'Irr' even for program memory and odd for data memory.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
dst | src  
2
10  
E3  
r
Irr  
Examples:  
Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory locations 1033H = 0CDH and  
1034H = 0C5H; external data memory locations 1033H = 0DDH and 1034H = 0D5H:  
LDCI  
R8,@RR6  
; 0CDH (contents of program memory location 1033H) is loaded  
; into R8 and RR6 is incremented by one (RR6 ¬ RR6 + 1)  
; R8 = 0CDH, R6 = 10H, R7 = 34H  
LDEI  
R8,@RR6  
; 0DDH (contents of data memory location 1033H) is loaded  
; into R8 and RR6 is incremented by one (RR6 ¬ RR6 + 1)  
; R8 = 0DDH, R6 = 10H, R7 = 34H  
6-55  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
LDCPD/LDEPD— Load Memory with Pre-Decrement  
LDCPD/  
LDEPD  
dst,src  
Operation:  
rr ¬ rr – 1  
dst ¬ src  
These instructions are used for block transfers of data from program or data memory from the  
register file. The address of the memory location is specified by a working register pair and is  
first decremented. The contents of the source location are then loaded into the destination  
location. The contents of the source are unaffected.  
LDCPD refers to program memory and LDEPD refers to external data memory. The assembler  
makes 'Irr' an even number for program memory and an odd number for external data memory.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
src | dst  
2
14  
F2  
Irr  
r
Examples:  
Given: R0 = 77H, R6 = 30H, and R7 = 00H:  
LDCPD @RR6,R0  
; (RR6 ¬ RR6 – 1)  
; 77H (contents of R0) is loaded into program memory location  
; 2FFFH (3000H – 1H)  
; R0 = 77H, R6 = 2FH, R7 = 0FFH  
LDEPD @RR6,R0  
; (RR6 ¬ RR6 – 1)  
; 77H (contents of R0) is loaded into external data memory  
; location 2FFFH (3000H – 1H)  
; R0 = 77H, R6 = 2FH, R7 = 0FFH  
6-56  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
LDCPI/LDEPI— Load Memory with Pre-Increment  
LDCPI/  
LDEPI  
dst,src  
Operation:  
rr ¬ rr + 1  
dst ¬ src  
These instructions are used for block transfers of data from program or data memory from the  
register file. The address of the memory location is specified by a working register pair and is  
first incremented. The contents of the source location are loaded into the destination location.  
The contents of the source are unaffected.  
LDCPI refers to program memory and LDEPI refers to external data memory. The assembler  
makes 'Irr' an even number for program memory and an odd number for data memory.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
src | dst  
2
14  
F3  
Irr  
r
Examples:  
Given: R0 = 7FH, R6 = 21H, and R7 = 0FFH:  
LDCPI  
@RR6,R0  
; (RR6 ¬ RR6 + 1)  
; 7FH (contents of R0) is loaded into program memory  
; location 2200H (21FFH + 1H)  
; R0 = 7FH, R6 = 22H, R7 = 00H  
LDEPI  
@RR6,R0  
; (RR6 ¬ RR6 + 1)  
; 7FH (contents of R0) is loaded into external data memory  
; location 2200H (21FFH + 1H)  
; R0 = 7FH, R6 = 22H, R7 = 00H  
6-57  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
LDW— Load Word  
LDW  
dst,src  
Operation:  
dst ¬ src  
The contents of the source (a word) are loaded into the destination. The contents of the source  
are unaffected.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
RR  
RR  
src  
RR  
IR  
opc  
opc  
src  
dst  
dst  
3
8
8
C4  
C5  
src  
4
8
C6  
RR  
IML  
Examples:  
Given: R4 = 06H, R5 = 1CH, R6 = 05H, R7 = 02H, register 00H = 1AH,  
register 01H = 02H, register 02H = 03H, and register 03H = 0FH:  
LDW  
LDW  
RR6,RR4  
00H,02H  
®
®
R6 = 06H, R7 = 1CH, R4 = 06H, R5 = 1CH  
Register 00H = 03H, register 01H = 0FH,  
register 02H = 03H, register 03H = 0FH  
LDW  
LDW  
LDW  
LDW  
RR2,@R7  
®
®
®
®
R2 = 03H, R3 = 0FH,  
04H,@01H  
RR6,#1234H  
02H,#0FEDH  
Register 04H = 03H, register 05H = 0FH  
R6 = 12H, R7 = 34H  
Register 02H = 0FH, register 03H = 0EDH  
In the second example, please note that the statement "LDW 00H,02H" loads the contents of  
the source word 02H, 03H into the destination word 00H, 01H. This leaves the value 03H in  
general register 00H and the value 0FH in register 01H.  
The other examples show how to use the LDW instruction with various addressing modes and  
formats.  
6-58  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
MULT— Multiply (Unsigned)  
MULT  
dst,src  
Operation:  
dst ¬ dst ´ src  
The 8-bit destination operand (even register of the register pair) is multiplied by the source  
operand (8 bits) and the product (16 bits) is stored in the register pair specified by the destination  
address. Both operands are treated as unsigned integers.  
Flags:  
C: Set if result is > 255; cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if MSB of the result is a "1"; cleared otherwise.  
V: Cleared.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
RR  
RR  
RR  
src  
opc  
src  
dst  
3
22  
22  
22  
84  
85  
86  
R
IR  
IM  
Examples:  
Given: Register 00H = 20H, register 01H = 03H, register 02H = 09H, register 03H = 06H:  
MULT  
MULT  
MULT  
00H, 02H  
®
®
®
Register 00H = 01H, register 01H = 20H, register 02H = 09H  
Register 00H = 00H, register 01H = 0C0H  
00H, @01H  
00H, #30H  
Register 00H = 06H, register 01H = 00H  
In the first example, the statement "MULT 00H,02H" multiplies the 8-bit destination operand (in  
the register 00H of the register pair 00H, 01H) by the source register 02H operand (09H). The  
16-bit product, 0120H, is stored in the register pair 00H, 01H.  
6-59  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
NEXT— Next  
NEXT  
Operation:  
PC ¬ @ IP  
IP ¬ IP + 2  
The NEXT instruction is useful when implementing threaded-code languages. The program  
memory word that is pointed to by the instruction pointer is loaded into the program counter. The  
instruction pointer is then incremented by two.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
10  
0F  
Example:  
The following diagram shows one example of how to use the NEXT instruction.  
Before  
After  
Data  
Address  
IP  
Data  
Address  
IP  
0043  
0120  
0045  
0130  
Address  
Data  
Address  
43 Address H  
Data  
PC  
43 Address H 01  
PC  
44 Address L 10  
45 Address H  
44 Address L  
45 Address H  
120 Next  
Memory  
130 Routine  
Memory  
6-60  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
NOP— No Operation  
NOP  
Operation:  
No action is performed when the CPU executes this instruction. Typically, one or more NOPs are  
executed in sequence in order to effect a timing delay of variable duration.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
FF  
Example:  
When the instruction  
NOP  
is encountered in a program, no operation occurs. Instead, there is a delay in instruction  
execution time.  
6-61  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
OR— Logical OR  
OR  
dst,src  
Operation:  
dst ¬ dst OR src  
The source operand is logically ORed with the destination operand and the result is stored in the  
destination. The contents of the source are unaffected. The OR operation results in a "1" being  
stored whenever either of the corresponding bits in the two operands is a "1"; otherwise a "0" is  
stored.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always cleared to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
42  
43  
r
r
r
lr  
dst  
src  
3
3
6
6
44  
45  
R
R
R
IR  
dst  
6
46  
R
IM  
Examples:  
Given: R0 = 15H, R1 = 2AH, R2 = 01H, register 00H = 08H, register 01H = 37H, and  
register 08H = 8AH:  
OR  
OR  
OR  
OR  
OR  
R0,R1  
®
®
®
®
®
R0 = 3FH, R1 = 2AH  
R0,@R2  
00H,01H  
01H,@00H  
00H,#02H  
R0 = 37H, R2 = 01H, register 01H = 37H  
Register 00H = 3FH, register 01H = 37H  
Register 00H = 08H, register 01H = 0BFH  
Register 00H = 0AH  
In the first example, if working register R0 contains the value 15H and register R1 the value  
2AH, the statement "OR R0,R1" logical-ORs the R0 and R1 register contents and stores the  
result (3FH) in destination register R0.  
The other examples show the use of the logical OR instruction with the various addressing  
modes and formats.  
6-62  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
POP— Pop From Stack  
POP  
dst  
Operation:  
dst ¬ @SP  
SP ¬ SP + 1  
The contents of the location addressed by the stack pointer are loaded into the destination. The  
stack pointer is then incremented by one.  
Flags:  
No flags affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
8
8
50  
51  
R
IR  
Examples:  
Given: Register 00H = 01H, register 01H = 1BH, SPH (0D8H) = 00H, SPL (0D9H) = 0FBH,  
and stack register 0FBH = 55H:  
POP  
POP  
00H  
®
®
Register 00H = 55H, SP = 00FCH  
@00H  
Register 00H = 01H, register 01H = 55H, SP = 00FCH  
In the first example, general register 00H contains the value 01H. The statement "POP 00H"  
loads the contents of location 00FBH (55H) into destination register 00H and then increments the  
stack pointer by one. Register 00H then contains the value 55H and the SP points to location  
00FCH.  
6-63  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
POPUD— Pop User Stack (Decrementing)  
POPUD  
dst,src  
Operation:  
dst ¬ src  
IR ¬ IR – 1  
This instruction is used for user-defined stacks in the register file. The contents of the register file  
location addressed by the user stack pointer are loaded into the destination. The user stack  
pointer is then decremented.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
src  
dst  
3
8
92  
R
IR  
Example:  
Given: Register 00H = 42H (user stack pointer register), register 42H = 6FH, and  
register 02H = 70H:  
POPUD 02H,@00H  
®
Register 00H = 41H, register 02H = 6FH, register 42H = 6FH  
If general register 00H contains the value 42H and register 42H the value 6FH, the statement  
"POPUD 02H,@00H" loads the contents of register 42H into the destination register 02H. The  
user stack pointer is then decremented by one, leaving the value 41H.  
6-64  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
POPUI— Pop User Stack (Incrementing)  
POPUI  
dst,src  
Operation:  
dst ¬ src  
IR ¬ IR + 1  
The POPUI instruction is used for user-defined stacks in the register file. The contents of the  
register file location addressed by the user stack pointer are loaded into the destination. The user  
stack pointer is then incremented.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
src  
dst  
3
8
93  
R
IR  
Example:  
Given: Register 00H = 01H and register 01H = 70H:  
POPUI 02H,@00H Register 00H = 02H, register 01H = 70H, register 02H = 70H  
®
If general register 00H contains the value 01H and register 01H the value 70H, the statement  
"POPUI 02H,@00H" loads the value 70H into the destination general register 02H. The user  
stack pointer (register 00H) is then incremented by one, changing its value from 01H to 02H.  
6-65  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
PUSH— Push To Stack  
PUSH  
src  
Operation:  
SP ¬ SP – 1  
@SP ¬ src  
A PUSH instruction decrements the stack pointer value and loads the contents of the source  
(src) into the location addressed by the decremented stack pointer. The operation then adds the  
new value to the top of the stack.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
src  
2
8 (internal clock)  
8 (external clock)  
70  
R
8 (internal clock)  
8 (external clock)  
71  
IR  
Examples:  
Given: Register 40H = 4FH, register 4FH = 0AAH, SPH = 00H, and SPL = 00H:  
PUSH  
PUSH  
40H  
®
Register 40H = 4FH, stack register 0FFH = 4FH,  
SPH = 0FFH, SPL = 0FFH  
@40H  
®
Register 40H = 4FH, register 4FH = 0AAH, stack register  
0FFH = 0AAH, SPH = 0FFH, SPL = 0FFH  
In the first example, if the stack pointer contains the value 0000H, and general register 40H the  
value 4FH, the statement "PUSH 40H" decrements the stack pointer from 0000 to 0FFFFH. It  
then loads the contents of register 40H into location 0FFFFH and adds this new value to the top  
of the stack.  
6-66  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
PUSHUD— Push User Stack (Decrementing)  
PUSHUD  
dst,src  
Operation:  
IR ¬ IR – 1  
dst ¬ src  
This instruction is used to address user-defined stacks in the register file. PUSHUD decrements  
the user stack pointer and loads the contents of the source into the register addressed by the  
decremented stack pointer.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
dst  
src  
3
8
82  
IR  
R
Example:  
Given: Register 00H = 03H, register 01H = 05H, and register 02H = 1AH:  
PUSHUD @00H,01H Register 00H = 02H, register 01H = 05H, register 02H = 05H  
®
If the user stack pointer (register 00H, for example) contains the value 03H, the statement  
"PUSHUD @00H,01H" decrements the user stack pointer by one, leaving the value 02H. The  
01H register value, 05H, is then loaded into the register addressed by the decremented user  
stack pointer.  
6-67  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
PUSHUI— Push User Stack (Incrementing)  
PUSHUI  
dst,src  
Operation:  
IR ¬ IR + 1  
dst ¬ src  
This instruction is used for user-defined stacks in the register file. PUSHUI increments the user  
stack pointer and then loads the contents of the source into the register location addressed by  
the incremented user stack pointer.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
dst  
src  
3
8
83  
IR  
R
Example:  
Given: Register 00H = 03H, register 01H = 05H, and register 04H = 2AH:  
PUSHUI @00H,01H Register 00H = 04H, register 01H = 05H, register 04H = 05H  
®
If the user stack pointer (register 00H, for example) contains the value 03H, the statement  
"PUSHUI @00H,01H" increments the user stack pointer by one, leaving the value 04H. The 01H  
register value, 05H, is then loaded into the location addressed by the incremented user stack  
pointer.  
6-68  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
RCF— Reset Carry Flag  
RCF  
RCF  
Operation:  
C ¬ 0  
The carry flag is cleared to logic zero, regardless of its previous value.  
C: Cleared to "0".  
Flags:  
No other flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
CF  
Example:  
Given: C = "1" or "0":  
The instruction RCF clears the carry flag (C) to logic zero.  
6-69  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
RET— Return  
RET  
Operation:  
PC ¬ @SP  
SP ¬ SP + 2  
The RET instruction is normally used to return to the previously executing procedure at the end  
of a procedure entered by a CALL instruction. The contents of the location addressed by the  
stack pointer are popped into the program counter. The next statement that is executed is the  
one that is addressed by the new program counter value.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode (Hex)  
opc  
1
8 (internal stack)  
10 (internal stack)  
AF  
Example:  
Given: SP = 00FCH, (SP) = 101AH, and PC = 1234:  
RET PC = 101AH, SP = 00FEH  
®
The statement "RET" pops the contents of stack pointer location 00FCH (10H) into the high byte  
of the program counter. The stack pointer then pops the value in location 00FEH (1AH) into the  
PC's low byte and the instruction at location 101AH is executed. The stack pointer now points to  
memory location 00FEH.  
6-70  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
RL— Rotate Left  
RL  
dst  
Operation:  
C ¬ dst (7)  
dst (0) ¬ dst (7)  
dst (n + 1) ¬ dst (n), n = 0–6  
The contents of the destination operand are rotated left one bit position. The initial value of bit 7  
is moved to the bit zero (LSB) position and also replaces the carry flag.  
7
0
C
Flags:  
C: Set if the bit rotated from the most significant bit position (bit 7) was "1".  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Set if arithmetic overflow occurred; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
90  
91  
R
IR  
Examples:  
Given: Register 00H = 0AAH, register 01H = 02H and register 02H = 17H:  
RL  
RL  
00H  
®
®
Register 00H = 55H, C = "1"  
Register 01H = 02H, register 02H = 2EH, C = "0"  
@01H  
In the first example, if general register 00H contains the value 0AAH (10101010B), the statement  
"RL 00H" rotates the 0AAH value left one bit position, leaving the new value 55H (01010101B)  
and setting the carry and overflow flags.  
6-71  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
RLC— Rotate Left Through Carry  
RLC  
dst  
Operation:  
dst (0) ¬ C  
C ¬ dst (7)  
dst (n + 1) ¬ dst (n), n = 0–6  
The contents of the destination operand with the carry flag are rotated left one bit position. The  
initial value of bit 7 replaces the carry flag (C); the initial value of the carry flag replaces bit zero.  
7
0
C
Flags:  
C: Set if the bit rotated from the most significant bit position (bit 7) was "1".  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during  
rotation; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
10  
11  
R
IR  
Examples:  
Given: Register 00H = 0AAH, register 01H = 02H, and register 02H = 17H, C = "0":  
RLC  
RLC  
00H  
®
®
Register 00H = 54H, C = "1"  
@01H  
Register 01H = 02H, register 02H = 2EH, C = "0"  
In the first example, if general register 00H has the value 0AAH (10101010B), the statement  
"RLC 00H" rotates 0AAH one bit position to the left. The initial value of bit 7 sets the carry flag  
and the initial value of the C flag replaces bit zero of register 00H, leaving the value 55H  
(01010101B). The MSB of register 00H resets the carry flag to "1" and sets the overflow flag.  
6-72  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
RR— Rotate Right  
RR  
dst  
Operation:  
C ¬ dst (0)  
dst (7) ¬ dst (0)  
dst (n) ¬ dst (n + 1), n = 0–6  
The contents of the destination operand are rotated right one bit position. The initial value of bit  
zero (LSB) is moved to bit 7 (MSB) and also replaces the carry flag (C).  
7
0
C
Flags:  
C: Set if the bit rotated from the least significant bit position (bit zero) was "1".  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during  
rotation; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
E0  
E1  
R
IR  
Examples:  
Given: Register 00H = 31H, register 01H = 02H, and register 02H = 17H:  
RR  
RR  
00H  
®
®
Register 00H = 98H, C = "1"  
Register 01H = 02H, register 02H = 8BH, C = "1"  
@01H  
In the first example, if general register 00H contains the value 31H (00110001B), the statement  
"RR 00H" rotates this value one bit position to the right. The initial value of bit zero is moved to  
bit 7, leaving the new value 98H (10011000B) in the destination register. The initial bit zero also  
resets the C flag to "1" and the sign flag and overflow flag are also set to "1".  
6-73  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
RRC— Rotate Right Through Carry  
RRC  
dst  
Operation:  
dst (7) ¬ C  
C ¬ dst (0)  
dst (n) ¬ dst (n + 1), n = 0–6  
The contents of the destination operand and the carry flag are rotated right one bit position. The  
initial value of bit zero (LSB) replaces the carry flag; the initial value of the carry flag replaces bit  
7 (MSB).  
7
0
C
Flags:  
C: Set if the bit rotated from the least significant bit position (bit zero) was "1".  
Z: Set if the result is "0" cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during  
rotation; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
C0  
C1  
R
IR  
Examples:  
Given: Register 00H = 55H, register 01H = 02H, register 02H = 17H, and C = "0":  
RRC  
RRC  
00H  
®
®
Register 00H = 2AH, C = "1"  
@01H  
Register 01H = 02H, register 02H = 0BH, C = "1"  
In the first example, if general register 00H contains the value 55H (01010101B), the statement  
"RRC 00H" rotates this value one bit position to the right. The initial value of bit zero ("1")  
replaces the carry flag and the initial value of the C flag ("1") replaces bit 7. This leaves the new  
value 2AH (00101010B) in destination register 00H. The sign flag and overflow flag are both  
cleared to "0".  
6-74  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
SB0— Select Bank 0  
SB0  
Operation:  
BANK ¬ 0  
The SB0 instruction clears the bank address flag in the FLAGS register (FLAGS.0) to logic zero,  
selecting bank 0 register addressing in the set 1 area of the register file.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
4F  
Example:  
The statement  
SB0  
clears FLAGS.0 to "0", selecting bank 0 register addressing.  
6-75  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
SB1— Select Bank 1  
SB1  
Operation:  
BANK ¬ 1  
The SB1 instruction sets the bank address flag in the FLAGS register (FLAGS.0) to logic one,  
selecting bank 1 register addressing in the set 1 area of the register file. (Bank 1 is not  
implemented in some KS88-series microcontrollers.)  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
5F  
Example:  
The statement  
SB1  
sets FLAGS.0 to "1", selecting bank 1 register addressing, if implemented.  
6-76  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
SBC— Subtract With Carry  
SBC  
dst,src  
Operation:  
dst ¬ dst – src – c  
The source operand, along with the current value of the carry flag, is subtracted from the  
destination operand and the result is stored in the destination. The contents of the source are  
unaffected. Subtraction is performed by adding the two's-complement of the source operand to  
the destination operand. In multiple precision arithmetic, this instruction permits the carry  
("borrow") from the subtraction of the low-order operands to be subtracted from the subtraction of  
high-order operands.  
Flags:  
C: Set if a borrow occurred (src > dst); cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite sign and the sign  
of the result is the same as the sign of the source; cleared otherwise.  
D: Always set to "1".  
H: Cleared if there is a carry from the most significant bit of the low-order four bits of the result;  
set otherwise, indicating a "borrow".  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
32  
33  
r
r
r
lr  
dst  
src  
3
3
6
6
34  
35  
R
R
R
IR  
dst  
6
36  
R
IM  
Examples:  
Given: R1 = 10H, R2 = 03H, C = "1", register 01H = 20H, register 02H = 03H, and  
register 03H = 0AH:  
SBC  
SBC  
SBC  
SBC  
SBC  
R1,R2  
®
®
®
®
®
R1 = 0CH, R2 = 03H  
R1,@R2  
01H,02H  
01H,@02H  
01H,#8AH  
R1 = 05H, R2 = 03H, register 03H = 0AH  
Register 01H = 1CH, register 02H = 03H  
Register 01H = 15H,register 02H = 03H, register 03H = 0AH  
Register 01H = 95H; C, S, and V = "1"  
In the first example, if working register R1 contains the value 10H and register R2 the value 03H,  
the statement "SBC R1,R2" subtracts the source value (03H) and the C flag value ("1") from the  
destination (10H) and then stores the result (0CH) in register R1.  
6-77  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
SCF— Set Carry Flag  
SCF  
Operation:  
Flags:  
C ¬ 1  
The carry flag (C) is set to logic one, regardless of its previous value.  
C: Set to "1".  
No other flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
DF  
Example:  
The statement  
SCF  
sets the carry flag to logic one.  
6-78  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
SRA— Shift Right Arithmetic  
SRA  
dst  
Operation:  
dst (7) ¬ dst (7)  
C ¬ dst (0)  
dst (n) ¬ dst (n + 1), n = 0–6  
An arithmetic shift-right of one bit position is performed on the destination operand. Bit zero (the  
LSB) replaces the carry flag. The value of bit 7 (the sign bit) is unchanged and is shifted into bit  
position 6.  
7
6
0
C
Flags:  
C: Set if the bit shifted from the LSB position (bit zero) was "1".  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Always cleared to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
D0  
D1  
R
IR  
Examples:  
Given: Register 00H = 9AH, register 02H = 03H, register 03H = 0BCH, and C = "1":  
SRA  
SRA  
00H  
®
®
Register 00H = 0CD, C = "0"  
@02H  
Register 02H = 03H, register 03H = 0DEH, C = "0"  
In the first example, if general register 00H contains the value 9AH (10011010B), the statement  
"SRA 00H" shifts the bit values in register 00H right one bit position. Bit zero ("0") clears the C  
flag and bit 7 ("1") is then shifted into the bit 6 position (bit 7 remains unchanged). This leaves  
the value 0CDH (11001101B) in destination register 00H.  
6-79  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
SRP/SRP0/SRP1— Set Register Pointer  
SRP  
src  
src  
src  
SRP0  
SRP1  
Operation:  
If src (1) = 1 and src (0) = 0 then: RP0 (3–7)  
¬
¬
¬
¬
¬
¬
src (3–7)  
src (3–7)  
src (4–7),  
0
If src (1) = 0 and src (0) = 1 then: RP1 (3–7)  
If src (1) = 0 and src (0) = 0 then: RP0 (4–7)  
RP0 (3)  
RP1 (4–7)  
RP1 (3)  
src (4–7),  
1
The source data bits one and zero (LSB) determine whether to write one or both of the register  
pointers, RP0 and RP1. Bits 3–7 of the selected register pointer are written unless both register  
pointers are selected. RP0.3 is then cleared to logic zero and RP1.3 is set to logic one.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
src  
opc  
src  
2
4
31  
IM  
Examples:  
The statement  
SRP #40H  
sets register pointer 0 (RP0) at location 0D6H to 40H and register pointer 1 (RP1) at location  
0D7H to 48H.  
The statement "SRP0 #50H" sets RP0 to 50H, and the statement "SRP1 #68H" sets RP1 to  
68H.  
6-80  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
STOP— Stop Operation  
STOP  
Operation:  
The STOP instruction stops the both the CPU clock and system clock and causes the  
microcontroller to enter Stop mode. During Stop mode, the contents of on-chip CPU registers,  
peripheral registers, and I/O port control and data registers are retained. Stop mode can be  
released by an external reset operation or by external interrupts. For the reset operation, the  
RESET pin must be held to Low level until the required oscillation stabilization interval has  
elapsed.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
1
4
7F  
Example:  
The statement  
STOP  
halts all microcontroller operations.  
6-81  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
SUB— Subtract  
SUB  
dst,src  
Operation:  
dst ¬ dst – src  
The source operand is subtracted from the destination operand and the result is stored in the  
destination. The contents of the source are unaffected. Subtraction is performed by adding the  
two's complement of the source operand to the destination operand.  
Flags:  
C: Set if a "borrow" occurred; cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite signs and the  
sign of the result is of the same as the sign of the source operand; cleared otherwise.  
D: Always set to "1".  
H: Cleared if there is a carry from the most significant bit of the low-order four bits of the result;  
set otherwise indicating a "borrow".  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
dst |  
src  
2
4
6
22  
r
r
23  
r
lr  
opc  
opc  
src  
dst  
dst  
src  
3
3
6
6
24  
25  
R
R
R
IR  
6
26  
R
IM  
Examples:  
Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
R1,R2  
®
®
®
®
®
®
R1 = 0FH, R2 = 03H  
R1,@R2  
01H,02H  
01H,@02H  
01H,#90H  
01H,#65H  
R1 = 08H, R2 = 03H  
Register 01H = 1EH, register 02H = 03H  
Register 01H = 17H, register 02H = 03H  
Register 01H = 91H; C, S, and V = "1"  
Register 01H = 0BCH; C and S = "1", V = "0"  
In the first example, if working register R1 contains the value 12H and if register R2 contains the  
value 03H, the statement "SUB R1,R2" subtracts the source value (03H) from the destination  
value (12H) and stores the result (0FH) in destination register R1.  
6-82  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
SWAP— Swap Nibbles  
SWAP  
dst  
Operation:  
dst (0 – 3) « dst (4 – 7)  
The contents of the lower four bits and upper four bits of the destination operand are swapped.  
7
4 3  
0
Flags:  
C: Undefined.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Undefined.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
F0  
F1  
R
IR  
Examples:  
Given: Register 00H = 3EH, register 02H = 03H, and register 03H = 0A4H:  
SWAP  
SWAP  
00H  
®
®
Register 00H = 0E3H  
@02H  
Register 02H = 03H, register 03H = 4AH  
In the first example, if general register 00H contains the value 3EH (00111110B), the statement  
"SWAP 00H" swaps the lower and upper four bits (nibbles) in the 00H register, leaving the value  
0E3H (11100011B).  
6-83  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
TCM— Test Complement Under Mask  
TCM  
dst,src  
Operation:  
(NOT dst) AND src  
This instruction tests selected bits in the destination operand for a logic one value. The bits to be  
tested are specified by setting a "1" bit in the corresponding position of the source operand  
(mask). The TCM statement complements the destination operand, which is then ANDed with the  
source mask. The zero (Z) flag can then be checked to determine the result. The destination and  
source operands are unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always cleared to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
62  
63  
r
r
r
lr  
dst  
src  
3
3
6
6
64  
65  
R
R
R
IR  
dst  
6
66  
R
IM  
Examples:  
Given: R0 = 0C7H, R1 = 02H, R2 = 12H, register 00H = 2BH, register 01H = 02H, and  
register 02H = 23H:  
TCM  
TCM  
TCM  
TCM  
R0,R1  
®
®
®
®
R0 = 0C7H, R1 = 02H, Z = "1"  
R0,@R1  
00H,01H  
00H,@01H  
R0 = 0C7H, R1 = 02H, register 02H = 23H, Z = "0"  
Register 00H = 2BH, register 01H = 02H, Z = "1"  
Register 00H = 2BH, register 01H = 02H,  
register 02H = 23H, Z = "1"  
TCM  
00H,#34  
®
Register 00H = 2BH, Z = "0"  
In the first example, if working register R0 contains the value 0C7H (11000111B) and register R1  
the value 02H (00000010B), the statement "TCM R0,R1" tests bit one in the destination register  
for a "1" value. Because the mask value corresponds to the test bit, the Z flag is set to logic one  
and can be tested to determine the result of the TCM operation.  
6-84  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
TM— Test Under Mask  
TM  
dst,src  
Operation:  
dst AND src  
This instruction tests selected bits in the destination operand for a logic zero value. The bits to be  
tested are specified by setting a "1" bit in the corresponding position of the source operand  
(mask), which is ANDed with the destination operand. The zero (Z) flag can then be checked to  
determine the result. The destination and source operands are unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always reset to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
72  
73  
r
r
r
lr  
dst  
src  
3
3
6
6
74  
75  
R
R
R
IR  
dst  
6
76  
R
IM  
Examples:  
Given: R0 = 0C7H, R1 = 02H, R2 = 18H, register 00H = 2BH, register 01H = 02H, and  
register 02H = 23H:  
TM  
TM  
TM  
TM  
R0,R1  
®
®
®
®
R0 = 0C7H, R1 = 02H, Z = "0"  
R0,@R1  
00H,01H  
00H,@01H  
R0 = 0C7H, R1 = 02H, register 02H = 23H, Z = "0"  
Register 00H = 2BH, register 01H = 02H, Z = "0"  
Register 00H = 2BH, register 01H = 02H,  
register 02H = 23H, Z = "0"  
TM  
00H,#54H  
®
Register 00H = 2BH, Z = "1"  
In the first example, if working register R0 contains the value 0C7H (11000111B) and register R1  
the value 02H (00000010B), the statement "TM R0,R1" tests bit one in the destination register  
for a "0" value. Because the mask value does not match the test bit, the Z flag is cleared to logic  
zero and can be tested to determine the result of the TM operation.  
6-85  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
WFI— Wait For Interrupt  
WFI  
Operation:  
The CPU is effectively halted until an interrupt occurs, except that DMA transfers can still take  
place during this wait state. The WFI status can be released by an internal interrupt, including a  
fast interrupt .  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4n  
3F  
( n = 1, 2, 3, … )  
Example:  
The following sample program structure shows the sequence of operations that follow a "WFI"  
statement:  
Main program  
.
.
.
EI  
WFI  
(Enable global interrupt)  
(Wait for interrupt)  
(Next instruction)  
.
.
.
Interrupt occurs  
Interrupt service routine  
.
.
.
Clear interrupt flag  
IRET  
Service routine completed  
6-86  
S3P80C5/C80C5/C80C8  
INSTRUCTION SET  
XOR— Logical Exclusive OR  
XOR  
dst,src  
Operation:  
dst ¬ dst XOR src  
The source operand is logically exclusive-ORed with the destination operand and the result is  
stored in the destination. The exclusive-OR operation results in a "1" bit being stored whenever  
the corresponding bits in the operands are different; otherwise, a "0" bit is stored.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always reset to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
B2  
B3  
r
r
r
lr  
dst  
src  
3
3
6
6
B4  
B5  
R
R
R
IR  
dst  
6
B6  
R
IM  
Examples:  
Given: R0 = 0C7H, R1 = 02H, R2 = 18H, register 00H = 2BH, register 01H = 02H, and  
register 02H = 23H:  
XOR  
XOR  
XOR  
XOR  
XOR  
R0,R1  
®
®
®
®
®
R0 = 0C5H, R1 = 02H  
R0,@R1  
00H,01H  
00H,@01H  
00H,#54H  
R0 = 0E4H, R1 = 02H, register 02H = 23H  
Register 00H = 29H, register 01H = 02H  
Register 00H = 08H, register 01H = 02H, register 02H = 23H  
Register 00H = 7FH  
In the first example, if working register R0 contains the value 0C7H and if register R1 contains  
the value 02H, the statement "XOR R0,R1" logically exclusive-ORs the R1 value with the R0  
value and stores the result (0C5H) in the destination register R0.  
6-87  
INSTRUCTION SET  
S3P80C5/C80C5/C80C8  
NOTES  
6-88  
S3P80C5/C80C5/C80C8  
CLOCK CIRCUITS  
7
CLOCK CIRCUITS  
OVERVIEW  
The clock frequency generated for the S3P80C5/C80C5/C80C8 by an external crystal, or supplied by an external  
clock source, can range from 1MHz to 4 MHz. The maximum CPU clock frequency, as determined by CLKCON  
register settings, is 4 MHz. The XIN and XOUT pins connect the external oscillator or clock source to the on-chip  
clock circuit.  
SYSTEM CLOCK CIRCUIT  
The system clock circuit has the following components:  
— External crystal or ceramic resonator oscillation source (or an external clock)  
— Oscillator stop and wake-up functions  
— Programmable frequency divider for the CPU clock (fOSC divided by 1, 2, 8, or 16)  
— Clock circuit control register, CLKCON  
C1  
C2  
XIN  
XIN  
External  
Clock  
Open Pin  
XOUT  
XOUT  
Figure 7-1. Main Oscillator Circuit  
Figure 7-2. External Clock Circuit  
(External Crystal or Ceramic Resonator)  
7-1  
CLOCK CIRCUITS  
S3P80C5/C80C5/C80C8  
CLOCK STATUS DURING POWER-DOWN MODES  
The two power-down modes, Stop mode and Idle mode, affect the system clock as follows:  
— In Stop mode, the main oscillator is halted. Stop mode is released, and the oscillator started, by Power On  
Reset operation or by a non-vectored interrupt - interrupt with reset (INTR). To enter the Stop mode,  
STOPCON (STOP Control register) has to be loaded with value, #0A5H before STOP instruction execution.  
After recovering from the Stop mode by reset or interrupt, STOPCON register is automatically cleared.  
— In Idle mode, the internal clock signal is gated away from the CPU, but continues to be supplied to the  
interrupt structure, timer 0, and counter A. Idle mode is released by a reset or by an interrupt (external or  
internally generated).  
STOP  
STOPCON  
Instruction  
CLKCON.3,.4  
Oscillator  
Stop  
1/2  
1/8  
M
U
X
Main  
OSC  
CPU  
Clock  
Oscillator  
Wake-up  
1/16  
Noise  
filter  
INT Pin (1)  
NOTES:  
1. An external interrupt with an RC-delay noise filter (for S3C80C5/C80C8/,  
INT0-4) is fiexed to release Stop mode and "wake up" the main  
oscillator.  
2. Because the S3C80C5/C80C8 has no subsystem clock, the 3-bit CLKCON  
signature code (CLKCON.2-CLKCON.0) is no meaning.  
Figure 7-3. System Clock Circuit Diagram  
7-2  
S3P80C5/C80C5/C80C8  
CLOCK CIRCUITS  
SYSTEM CLOCK CONTROL REGISTER (CLKCON)  
The system clock control register, CLKCON, is located in set 1, address D4H. It is read/write addressable and  
has the following functions:  
— Oscillator frequency divide-by value  
CLKCON register settings control whether or not an external interrupt can be used to trigger a Stop mode  
release. (This is called the "IRQ wake-up" function.) The IRQ wake-up enable bit is CLKCON.7. In  
S3P80C5/C80C5/C80C8, this bit is not valid any more. Actually bit 7, 6, 5, 2, 1, and 0 are no meaning in  
S3P80C5/C80C5/C80C8.  
After a reset, the main oscillator is activated, and the fOSC/16 (the slowest clock speed) is selected as the CPU  
clock. If necessary, you can then increase the CPU clock speed to fOSC, fOSC/2, or fOSC/8.  
System Clock Control Register (CLKCON)  
D4H, Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Not used  
Not used  
Divide-by selection bits for  
CPU clock frequency:  
00 = fOSC/16  
Not used  
01 = fOSC/8  
10 = fOSC/2  
11 = fOSC (non-divided)  
Figure 7-4. System Clock Control Register (CLKCON)  
7-3  
CLOCK CIRCUITS  
S3P80C5/C80C5/C80C8  
NOTES  
7-4  
S3P80C5/C80C5/C80C8  
RESET and POWER-DOWN  
8
RESET and POWER-DOWN  
SYSTEM RESET  
S3P80C5/C80C5/C80C8 has four different system reset sources as followings:  
— Low Voltage Detect (LVD)  
— Internal POR circuit  
— INTR (Interrupt with RESET)  
— Basic Timer (Watchdog timer)  
Enable/Disable  
Noise  
Filter  
LVD  
Stop  
STOPCON  
INTR  
POR  
BT(WDT)  
Figure 8-1. Reset Block Diagram  
LVD RESET  
The Low Voltage detect circuit is built on the S3P80C5/C80C5/C80C8 product for system reset not in stop mode.  
When the operating status is not stop mode it detects a slope of VDD by comparing the voltage at VDD with VLVD  
(Low level Detect Voltage). The reset pulse is generated by the rising slope of VDD. While the voltage at VDD is  
rising up and passing VLVD, the reset pulse is occurred at the moment ”VDD >= VLVD ". This function is disabled  
when the operating state is "stop mode" to reduce the current consumption under 1 uA instead of 6 uA.  
8-1  
RESET and POWER-DOWN  
S3P80C5/C80C5/C80C8  
INTERRUPT WITH RESET(INTR)  
A non vectored interrupt called Interrupt with reset (INTR) is built in  
S3C80C5/C80C8 to release stop status with system reset. When a falling/rising edge occurs at Port 0 during stop  
mode, INTR signal is generated and it makes the system reset pulse. An INTR signal is generated relating to  
interaction between Port 0 and operating status. It is enabled by STOP status and occurs by falling/rising edge at  
port0. So only when the chip status is "STOP", it is available. If the operating status is not stop status INTR does  
not occurs.  
NOTE  
This INTR is supplementary function to make system reset for an application which is using " stop mode"  
like remote controller. If an application which is not using "stop mode" , INTR function can be discarded.  
WATCHDOG TIMER RESET  
The S3P80C5/C80C5/C80C8 build a watch-dog timer that can recover to normal operation from abnormal  
function. Watchdog timer generates a system reset signal if not clearing a BT-Basic Counter within a specific  
time by program. System reset can return to the proper operation of chip.  
POWER-ON RESET(POR)  
The power-on reset circuit is built on the S3P80C5/C80C5/C80C8 product. During a power-on reset, the voltage  
at VDD goes to High level and the Schmitt trigger input of POR circuit is forced to Low level and then to High  
level. The power-on reset circuit makes a reset signal whenever the power supply voltage is powering-up and the  
Schmitt trigger input senses the Low level. This on-chip POR circuit consists of an internal resistor, an internal  
capacitor, and a Schmitt trigger input transistor.  
VDD  
R : On-Chip Resistor  
C : On-Chip Capacitor  
System Reset  
C
Schmitt Trigger Inverter  
VSS  
Figure 8-2. Power-on Reset Circuit  
8-2  
S3P80C5/C80C5/C80C8  
RESET and POWER-DOWN  
If Va voltage is under the 0.4 VDD, Reset pulse signal is gernerated.  
If Va voltage is over than 0.4 VDD, Reset pulse is not gernerated.  
TVDD  
(VDD Rising Time)  
Voltage [V]  
VDD  
VDD  
Va  
VIH = 0.85 VDD  
VIL = 0.4 VDD  
Reset Pulse Width  
Reset pulse  
Time  
Figure 8-3. Timing Diagram for Power-on Reset Circuit  
SYSTEM RESET OPERATION  
System reset starts the oscillation circuit, synchronize chip operation with CPU clock, and initialize the internal  
CPU and peripheral modules. This procedure brings the S3P80C5/C80C5/C80C8 into a known operating status.  
To allow time for internal CPU clock oscillation to stabilize, the reset pulse generator must be held to active level  
for a minimum time interval after the power supply comes within tolerance. The minimum required reset  
operation for a oscillation stabilization time is 16 oscillation clocks. All system and peripheral control registers are  
then reset to their default hardware values (see Tables 5-1).  
In summary, the following sequence of events occurs during a reset operation:  
— All interrupts are disabled.  
— The watchdog function (basic timer) is enabled.  
— Ports 0, 1 and 2 are set to input mode and all pull-up resistors are disabled for the I/O port pin circuits.  
— Peripheral control and data register settings are disabled and reset to their default hardware values (see  
Table 5-1).  
— The program counter (PC) is loaded with the program reset address in the ROM, 0100H.  
— When the programmed oscillation stabilization time interval has elapsed, the instruction stored in ROM  
location 0100H (and 0101H) is fetched and executed.  
8-3  
RESET and POWER-DOWN  
S3P80C5/C80C5/C80C8  
HARDWARE RESET VALUES  
Tables 5-1 list the reset values for CPU and system registers, peripheral control registers, and peripheral data  
registers following a reset operation. The following notation is used to represent reset values:  
— A "1" or a "0" shows the reset bit value as logic one or logic zero, respectively.  
— An 'x' means that the bit value is undefined after a reset.  
— A dash ('-') means that the bit is either not used or not mapped (but a 0 is read from the bit position)  
Table 8-1. Set 1 Register Values After Reset  
Register Name  
Mnemonic  
Address  
Dec  
Bit Values After Reset  
Hex  
D0H  
D1H  
D2H  
D3H  
D4H  
D5H  
D6H  
D7H  
7
0
1
0
0
0
´
6
0
1
0
0
0
´
5
0
1
0
0
0
´
4
0
1
0
0
0
´
3
0
1
0
0
0
´
2
0
1
0
0
0
´
1
0
1
0
0
0
0
0
0
1
0
0
0
0
Timer 0 counter (read-only)  
Timer 0 data register  
Timer 0 control register  
Basic timer control register  
Clock control register  
System flags register  
Register pointer 0  
T0CNT  
T0DATA  
T0CON  
BTCON  
CLKCON  
FLAGS  
RP0  
208  
209  
210  
211  
212  
213  
214  
215  
1
1
1
1
0
0
0
0
0
1
Register pointer 1  
RP1  
Location D8H (SPH) is not mapped.  
Stack pointer (low byte)  
Instruction pointer (high byte)  
Instruction pointer (low byte)  
Interrupt request register (read-only)  
Interrupt mask register  
System mode register  
Register page pointer  
SPL  
IPH  
IPL  
IRQ  
IMR  
SYM  
PP  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
D9H  
DAH  
DBH  
DCH  
DDH  
DEH  
DFH  
E0H  
E1H  
E2H  
´
´
´
´
´
´
´
´
´
´
´
´
´
´
´
´
´
´
´
´
´
´
´
´
0
´
0
´
0
´
0
´
0
´
0
´
0
´
0
´
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
´
´
´
0
0
0
0
0
0
0
0
0
0
0
0
Port 0 data register  
P0  
Port 1 data register  
P1  
Port 2 data register  
P2  
Location E3H–E6H is not mapped.  
Port 0 pull-up enable register  
Port 0 control register (high byte)  
Port 0 control register (low byte)  
P0PUR  
P0CONH  
P0CONL  
231  
232  
233  
E7H  
E8H  
E9H  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8-4  
S3P80C5/C80C5/C80C8  
RESET and POWER-DOWN  
Table 8-1. Set 1 Register Values After Reset (Continued)  
Register Name  
Mnemonic  
Address  
Bit Values After Reset  
Dec  
Hex  
EAH  
EBH  
ECH  
7
0
0
0
6
0
0
0
5
0
0
0
4
0
0
0
3
0
0
0
2
0
0
0
1
0
0
0
0
0
0
0
Port 1 control register (high byte)  
Port 1 control register (low byte)  
Port 1 pull-up enable register  
P1CONH  
P1CONL  
P1PUR  
234  
235  
236  
Location EDH–EFH is not mapped.  
Port 2 control register  
P2CON  
P0INT  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
F0H  
F1H  
F2H  
F3H  
F4H  
F5H  
F6H  
F7H  
F8H  
F9H  
FAH  
FBH  
0
0
0
1
1
0
0
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
0
0
0
1
1
0
0
1
1
0
0
Port 0 interrupt enable register  
Port 0 interrupt pending register  
Counter A control register  
P0PND  
CACON  
CADATAH  
CADATAL  
T1CNTH  
T1CNTL  
T1DATAH  
T1DATAL  
T1CON  
Counter A data register (high byte)  
Counter A data register (low byte)  
Timer 1 counter register (high byte)  
Timer 1 counter register (low byte)  
Timer 1 data register (high byte)  
Timer 1 data register (low byte)  
Timer 1 control register  
Stop control register  
STOPCON 251  
Locations FCH is not mapped.  
Basic timer counter  
BTCNT  
EMT  
253  
254  
255  
FDH  
FEH  
FFH  
´
´
´
´
´
´
´
´
External memory timing register  
Interrupt priority register  
0
´
1
´
1
´
1
´
1
´
1
´
0
´
´
IPR  
NOTES:  
1. Although the SYM register is not used for the S3P80C5/C80C5/C80C8, SYM.5  
should always be "0". If you accidentally write a 1 to this bit during normal operation, a system malfunction may occur.  
2. Except for T0CNT, IRQ, T1CNTH, T1CNTL, and BTCNT, which are read-only, all registers in set 1 are  
read/write addressable.  
3. You cannot use a read-only register as a destination field for the instructions OR, AND, LD, and LDB.  
4. Interrupt pending flags are noted by shaded table cells.  
8-5  
RESET and POWER-DOWN  
S3P80C5/C80C5/C80C8  
POWER-DOWN MODES  
STOP MODE  
Stop mode is invoked by stop control register (STOPCON) setting and the instruction STOP. In Stop mode, the  
operation of the CPU and all peripherals is halted. That is, the on-chip main oscillator stops and the supply  
current is reduced to less than 3 uA at 5.5 V. All system functions stop when the clock "freezes,"  
Stop mode can be released of two ways : by an INTR (Interrupt with Reset) or by a POR (Power On Reset).  
USING POR TO RELEASE STOP MODE  
Stop mode is released when the reset signal goes active by power on reset (POR): all system and peripheral  
control registers are reset to their default hardware values and the contents of all data registers are unknown  
states. When the oscillation stabilization interval has elapsed, the CPU starts the system initialization routine by  
fetching the program instruction stored in ROM location 0100H.  
USING AN INTR TO RELEASE STOP MODE  
Stop mode is released when INTR (Interrupt with Reset) occurs. INTR occurs when falling/rising edge is detected  
at P0 during stop mode and it make system reset.  
NOTE  
1. Do not use stop mode if you are using an external clock source because XIN input must be cleared  
internally to VSS to reduce current leakage.  
2. STOP mode always be released by the system reset (INTR or POR) so the system register value and  
control register value are initialized as reset value. And when the reset occurs from INTR, the prime  
register value will be retained but it will be unknown states if it occurs from POR. So an application  
which is using stop mode should be added specific S/W which divide the system reset into STOP  
mode releasing or power on reset. Following Programming Tip can be useful for more  
understanding.  
8-6  
S3P80C5/C80C5/C80C8  
RESET and POWER-DOWN  
F
PROGRAMMING TIP — To Divide STOP Mode Releasing and POR.  
This example shows how to enter the stop mode and how to know it is stop mode releasing or power on RESET.  
ORG  
DI  
0100H  
; Reset address  
START  
;
LD  
BTCON,#03h  
SPL,#0FFH  
SYM  
; enable basic timer counter.  
; Initialize the system register  
LD  
CLR  
CLR  
CLR  
CLR  
PP  
EMT  
IPR  
LD  
LD  
LD  
P0CONH,#00H  
P0CONL,#00H  
P0PUR,#0FFH  
; Initialize the control register  
CHECK_RAM:  
CHK_R  
; Check the RAM data whether it is stop mode releasing  
; or Power On RESET  
LD  
R0,#0BFH  
; If Power On Reset , go to POR_RESET  
CP  
JR  
R0,@R0  
;
NE,POR_RESET  
R0  
DEC  
CP  
JR  
R0,#0B0H  
UGE, CHK_R  
STOP_RESET:  
; STOP mode releasing.  
;
JR  
MAIN  
POR_RESET LD  
R0,#0FFH  
;Power On Reset  
;CHECK RAM data are failed so clear all RAM data.  
RAM_CLR  
CLR  
@R0  
DJNJ  
LD  
R0,RAMCLR  
R0,#0BFH  
;Initialize the CHECK RAM data as default value .  
8-7  
RESET and POWER-DOWN  
S3P80C5/C80C5/C80C8  
F
PROGRAMMING TIP — To Divide STOP Mode Releasing and POR. (Continued)  
CHK_W  
LD  
@R0,R0  
R0  
DEC  
CP  
JR  
R0,#0B0H  
UGE,CHK_W  
MAIN:  
CP  
JR  
P0,#0FFH  
;
EQ,ENT_STOP  
JP  
T,MAIN  
ENT_STOP  
LD  
STOPCON,#0A5H  
;Enter the STOP mode.  
STOP  
NOP  
NOP  
JP  
RESET  
8-8  
S3P80C5/C80C5/C80C8  
IDLE MODE  
RESET and POWER-DOWN  
Idle mode is invoked by the instruction IDLE (OPCODE 6FH). In Idle mode, CPU operations are halted while  
some peripherals remain active. During idle mode, the internal clock signal is gated away from the CPU and from  
all but the following peripherals, which remain active:  
— Interrupt logic  
— Timer 0  
— Timer 1  
— Counter A  
I/O port pins retain the mode (input or output) they had at the time Idle mode was entered.  
Idle Mode Release  
You can release Idle mode in one of two ways:  
1. Execute a reset. All system and peripheral control registers are reset to their default values and the contents  
of all data registers are retained. The reset automatically selects the slowest clock because of the hardware  
reset value for the CLKCON register. If all external interrupts are masked in the IMR register, a reset is the  
only way you can release Idle mode.  
2. Activate any enabled interrupt ; internal or external. When you use an interrupt to release Idle mode, the 2-bit  
CLKCON.4/CLKCON.3 value remains unchanged, and the currently selected clock value is used. The  
interrupt is then serviced. When the return-from-interrupt condition (IRET) occurs, the instruction immediately  
following the one which initiated Idle mode is executed.  
NOTE  
Only external interrupts with an RC delay built in to the pin circuit can be used to release Stop mode  
without reset. To release Idle mode, you can use either an external interrupt or an internally-generated  
interrupt.  
8-9  
RESET and POWER-DOWN  
S3P80C5/C80C5/C80C8  
SUMMARY TABLE OF STOP MODE, AND IDLE MODE  
Table 8-2. Summary of Each Mode  
IDLE  
VDD is higher than VLVD (VLVD < VDD).  
Item/Mode  
STOP  
Approach Condition  
VDD is higher than VLVD (VLVD < VDD).  
IDLE (instruction).  
STOPCON £ A5H  
STOP instruction  
Release Source  
Interrupt  
RESET  
INTR  
T0/T1 interrupt  
Counter A interrupt  
Ext. interrupt (Port0)  
POR  
RESET  
POR  
LVD  
WDT  
8-10  
S3P80C5/C80C5/C80C8  
I/O PORTS  
9
I/O PORTS  
OVERVIEW  
The S3P80C5/C80C5/C80C8 microcontroller has three bit-programmable I/O ports, P0–P2. Two ports, P0-P1,  
are 8-bit ports and P2 is a 3-bit port. This gives a total of 19 I/O pins in the S3P80C5/C80C5/C80C8"s 24-pin  
package. Each port is bit-programmable and can be flexibly configured to meet application design requirements.  
The CPU accesses ports by directly writing or reading port registers. No special I/O instructions are required.  
For IR universal remote controller applications, ports 0, and1 are usually configured to the keyboard matrix and  
port 2 is used to transmit the remote controller carrier signal or to indicate operating status by turning on a LED.  
Table 9-1 gives you a general overview of S3P80C5/C80C5/C80C8 I/O port functions.  
Table 9-1. S3P80C5/C80C5/C80C8 Port Configuration Overview  
Port  
Configuration Options  
0
8-bit general-purpose I/O port; Input or push-pull output; external interrupt input on falling  
edges, rising edges, or both edges; all P0 pin circuits have noise filters and interrupt  
enable/disable (P0INT) and pending control (P0PND); Pull-up resistors can be assigned to  
individual P0 pins using P0PUR register settings. Specially Interrupt with Reset(INTR) is  
assigned to release stop mode with system reset.  
1
2
8-bit general-purpose I/O port; Input, open-drain output, or push-pull output. Pull-up resistors  
can be assigned to individual P1 pins using P1PUR register settings.  
3-bit I/O port; input mode with or without pull-up, push-pull or open-drain output mode. REM  
and T0PWM can be assigned. Port 2 pins have high current drive capability to support LED  
applications. The port 2 data register contains three status bits: three for P2.0, P2.1 and P2.2  
and one for remote controller carrier signal on/off status.  
9-1  
I/O PORTS  
S3P80C5/C80C5/C80C8  
PORT DATA REGISTERS  
Table 9-2 gives you an overview of the register locations of all three S3C80C5/C80C8 port data registers. Data  
registers for ports 0, and 1 have the general format.  
NOTE  
The data register for port 2, P2, contains three bits for P2.0, P2.1 and P2.2, and an additional status bit  
for carrier signal on/off.  
Table 9-2. Port Data Register Summary  
Register Name  
Port 0 data register  
Port 1 data register  
Port 2 data register  
Mnemonic  
Decimal  
224  
Hex  
E0H  
E1H  
E2H  
R/W  
R/W  
R/W  
R/W  
P0  
P1  
P2  
225  
226  
Because port 2 is a 3-bit I/O port, the port 2 data register only contains values for P2.0, P2.1 and P2.2. The P2  
register also contains values for P2.0, P2.1 and P2.2. The P2 register also contains a special carrier on/off  
bit(P2.5). See the port 2 description for details. All other S3P80C5/C80C5/C80C8 I/O ports are 8-bit.  
PULL-UP RESISTOR ENABLE REGISTERS  
Port0 Pull-up Resistor Enable Register (P0PUR)  
E7H, R/W  
MSB .7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P0.7 P0.6 P0.5 P0.4 P0.3 P0.2 P0.1 P0.0  
Pull-up resistor enable bit:  
0 = Enable pull-up resistor  
1 = Disable pull-up resistor  
NOTE:  
Pull-up resistors can be assigned to the port 2 pins, P2.0, P2.1 and  
P2.2 by marking the appropriate the port 2 control register,P2CON.  
Figure 9-1. S3P80C5/C80C5/C80C8 I/O Port 0 Data Register Format  
9-2  
S3P80C5/C80C5/C80C8  
I/O PORTS  
Port1 Pull-up Resistor Enable Register (P1PUR)  
ECH, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0 LSB  
P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0  
Pull-up resistor enable bit:  
0 = Disable pull-up resistor  
1 = Enable pull-up resistor  
NOTE:  
Pull-up resistors can be assigned to the port 2 pins, P2.0, P2.1 and P2.2  
by marking the appropriate the port 2 control register, P2CON.  
Figure 9-2. S3P80C5/C80C5/C80C8 I/O Port 1 Data Register Format  
9-3  
I/O PORTS  
PORT 0  
S3P80C5/C80C5/C80C8  
Port 0 is a general-purpose, 8-bit I/O port. It is bit-programmable. Port 0 pins are accessed directly by read/write  
operations to the port 0 data register, P0 (set 1, E0H). The P0 pin circuits support pull-up resistor assignment  
using P0PUR register settings and all pins have noise filters for external interrupt inputs.  
Two 8-bit control registers are used to configure port 0 pins: P0CONH (set 1, E8H) for the upper nibble pins,  
P0.7–P0.4, and P0CONL (set 1, E9H) for lower nibble pins, P0.3–P0.0. Each control register byte contains four  
bit-pairs and each bit-pair configures one pin (see Figures 9-2 and 9-3). A hardware reset clears all P0 control  
and data registers to '00H'.  
A separate register, the port 0 interrupt control register, P0INT (set 1, F1H), is used to enable and disable  
external interrupt input. You can poll the port 0 interrupt pending register, P0PND to detect and clear pending  
conditions for these interrupts.  
The lower-nibble pins, P0.3–P0.0, are used for INT3–INT0 input (IRQ6), respectively. The upper nibble pins,  
P0.7–P0.4, are all used for INT4 input (IRQ7). Interrupts that are detected at any of these four pins are processed  
using the same vector address (E8H).  
Port 0 , P0.0–P0.7, is assigned interrupt with reset(INTR) to release stop mode with system reset.  
Port 0 Control Register, High Byte (P0CONH)  
E8H, Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P0.4/INT4  
P0.5/INT4  
P0.6/INT4  
P0.7/INT4  
P0CONH Pin Configureation Settings:  
00 Input mode; interrupt on falling edges  
01 Input mode; interrupt on rising and falling edges  
10 Push-pull output mode  
11 Input mode; interrupt on rising edges  
Figure 9-3. Port 0 High-Byte Control Register (P0CONH)  
9-4  
S3P80C5/C80C5/C80C8  
I/O PORTS  
Port 0 Control Register, Low Byte (P0CONL)  
E9H, Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P0.0/INT0  
P0.1/INT1  
P0.2/INT2  
P0.3/INT3  
P0CONL Pin Configureation Settings:  
00 Input mode; interrupt on falling edges  
01 Input mode; interrupt on rising and falling edges  
10 Push-pull output mode  
11 Input mode; interrupt on rising edges  
Figure 9-4. Port 0 Low-Byte Control Register (P0CONL)  
PORT 0 INTERRUPT ENABLE REGISTER (P0INT)  
The port 0 interrupt control register, P0INT, is used to enable and disable external interrupt input at individual P0  
pins (see Figure 10-5). To enable a specific external interrupt, you set its P0INT.n bit to "1". You must also be  
sure to make the correct settings in the corresponding port 0 control register (P0CONH, P0CONL).  
PORT 0 INTERRUPT PENDING REGISTER (P0PND)  
The port 0 interrupt pending register, P0PND, contains pending bits (flags) for each port 0 interrupt (see Figure  
10-6). When a P0 external interrupt is acknowledged by the CPU, the service routine must clear the pending  
condition by writing a "0" to the appropriate pending flag in the P0PND register (Writing a "1" to the pending bit  
has no effect).  
NOTE  
A hardware reset(INTR, POR) clears the P0INT and P0PND registers to '00H'. For this reason, the  
application program's initialization routine must enable the required external interrupts for port 0, and for  
the other I/O ports.  
9-5  
I/O PORTS  
S3P80C5/C80C5/C80C8  
Port 0 Interrup Enable Register (P0INT)  
F1H, Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P0.6/INT4  
P0.4/INT4  
P0.2/INT2  
P0.0/INT0  
P0.7/INT4  
P0.5/INT4  
P0.3/INT3  
P0.1/INT1  
Port 0 Interrupt Enable Bits:  
0
1
Disable interrupt  
Enable interrupt  
Figure 9-5. Port 0 External Interrupt Control Register (P0INT)  
Port 0 Interrup Pending Register (P0PND)  
F2H, Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P0.6/INT4  
P0.4/INT4  
P0.2/INT2  
P0.0/INT0  
P0.7/INT4  
P0.5/INT4  
P0.3/INT3  
P0.1/INT1  
Port 0 Interrupt Pending Bits:  
0
0
1
1
Interrupt not pending  
Clear P0.n pending condition (when write)  
P0.n interrupt is pending  
No effect (when write)  
Figure 9-6. Port 0 External Interrupt Pending Register (P0PND)  
9-6  
S3P80C5/C80C5/C80C8  
PORT 1  
I/O PORTS  
Port 1 is a bit-programmable 8-bit I/O port. Port 1 pins are accessed directly by read/write operations to the port 1  
data register, P1 (set 1, E1H).  
To configure port 1, the initialization routine writes the appropriate values to the two port 1 control registers:  
P1CONH (set 1, EAH) for the upper nibble pins, P1.7–P1.4, and P1CONL (set 1, EBH) for the lower nibble pins,  
P1.3–P1.0. Each 8-bit control register contains four bit-pairs and each 2-bit value configures one port pin (see  
Figures 9-6 and 9-7).  
Following a hardware reset, the port 1 control registers are cleared to '00H', configuring port 0 initially to Input  
mode.  
To assign pull-up resistors to P1 pins, you make the appropriate settings to the port 1 pull-up resistor enable  
register, P1PUR.  
Port 1 Control Register, High Byte (P1CONH)  
EAH, Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P1.4  
P1.5  
P1.6  
P1.7  
P1CONH Pin Configureation Settings:  
00 Input mode  
01 Open-drain output mode  
10 Push-pull output mode  
11 Invalid setting  
Figure 9-7. Port 1 High-Byte Control Register (P1CONH)  
9-7  
I/O PORTS  
S3P80C5/C80C5/C80C8  
Port 1 Control Register, Low Byte (P1CONL)  
EBH, Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P1.0  
P1.1  
P1.2  
P1.3  
P1CONL Pin Configureation Settings:  
00 Input mode  
01 Open-drain output mode  
10 Push-pull output mode  
11 Invalid setting  
Figure 9-8. Port 1 Low-Byte Control Register (P1CONL)  
9-8  
S3P80C5/C80C5/C80C8  
PORT 2  
I/O PORTS  
Port 2 is a bit-programmable 3-bit I/O port. Port 2 pins are accessed directly by read/write operations to the port 2  
data register, P2 (set 1, E2H). You can configure port 2 pins individually to Input mode, open-drain output mode,  
or push-pull output mode.  
P2.0, P2.1 and P2.2 are configured by writing 6-bit data value to the port 2 control register, P2CON. You can  
configure these pins to support input functions (Input mode, with or without pull-up, for T0CK) or output functions  
(push-pull or open-drain output mode for REM and timer 0 PWM).  
Port 2 pins have high current drive capability to support LED applications.  
A reset operation clears P2CON to '00H', selecting Input mode as the initial port 2 function.  
Port 2 Control Register (P2CON)  
F0H, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P1.0  
P2.2  
P2.1  
P2.2  
P2.1 Alternative Function Enable  
0
1
Normal I/O Function  
REM/T0CK  
P2.0 Alternative Function Enable  
0
1
Normal I/O Function  
T0PWM  
P2CON Pin Configuration Setting:  
00 C-MOS input mode  
01 Open-drain output mode  
10 Push-pull output mode  
11 C-MOS input mode with pull-up  
Figure 9-9. Port 2 Control Register (P2CON)  
9-9  
I/O PORTS  
S3P80C5/C80C5/C80C8  
Port 2 Data Register (P2)  
E2H, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P2.0/T0_PWM  
P2.1/REM/TOCK  
Not used for S3C80C5  
Carrier on/off for Remote Controller  
P2.2  
Not used for S3C80C5  
Figure 9-10. Port 2 Data Register (P2)  
9-10  
S3P80C5/C80C5/C80C8  
BASIC TIMER AND TIMER 0  
10 BASIC TIMER and TIMER 0  
MODULE OVERVIEW  
The S3P80C5/C80C5/C80C8 has two default timers: an 8-bit basic timer and one 8-bit general-purpose  
timer/counter. The 8-bit timer/counter is called timer 0.  
Basic Timer (BT)  
You can use the basic timer (BT) in two different ways:  
— As a watchdog timer to provide an automatic reset mechanism in the event of a system malfunction, or  
— To signal the end of the required oscillation stabilization interval after a reset or a Stop mode release.  
BASIC TIMER CONTROL REGISTER (BTCON)  
The basic timer control register, BTCON, is used to select the input clock frequency, to clear the basic timer  
counter and frequency dividers, and to enable or disable the watchdog timer function. It is located in set 1,  
address D3H, and is read/write addressable using Register addressing mode.  
A system reset clears BTCON. This enables the watchdog function and selects a basic timer clock frequency of  
fOSC/4096. To disable the watchdog function, you must write the signature code '1010B' to the basic timer  
register control bits BTCON.7–BTCON.4. For more reliability, we recommend to use the Watch-dog timer  
function in remote controller and hand-held product application.  
10-1  
BASIC TIMER and TIMER 0  
S3P80C5/C80C5/C80C8  
Basic Timer Control Register (BTCON)  
D3H, Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Watchdog function enable bits:  
1010B = Disable watchdog timer  
Other value = Enable watchdog timer  
Divider clear bit for basic  
timer and timer 0:  
0 = No effect  
1 = Clear both dividers  
Basic timer input clock selection bits:  
0 = No effect  
1 = Clear BTCNT  
Basic timer input clock selection bits:  
00 fOSC/4096  
01 fOSC/1024  
10 fOSC/128  
11 Invalid selection  
Figure 10-1. Basic Timer Control Register (BTCON)  
10-2  
S3P80C5/C80C5/C80C8  
BASIC TIMER AND TIMER 0  
BASIC TIMER FUNCTION DESCRIPTION  
Watchdog Timer Function  
You can program the basic timer overflow signal (BTOVF) to generate a reset by enabling the watchdog function.  
A reset clears BTCON to '00H', automatically enabling the watchdog timer function. A reset also selects the CPU  
clock (as determined by the current CLKCON register setting),divided by 4096, as the BT clock.  
A reset whenever a basic timer counter overflow occurs. During normal operation, the application program must  
prevent the overflow, and the accompanying reset operation, from occurring. To do this, the BTCNT value must  
be cleared (by writing a "1" to BTCON.1) at regular intervals.  
If a system malfunction occurs due to circuit noise or some other error condition, the BT counter clear operation  
will not be executed and a basic timer overflow will occur, initiating a reset. In other words, during normal  
operation, the basic timer overflow loop (a bit 7 overflow of the 8-bit basic timer counter, BTCNT) is always  
broken by a BTCNT clear instruction. If a malfunction does occur, a reset is triggered automatically.  
TIMER 0 CONTROL REGISTER (T0CON)  
You use the timer 0 control register, T0CON, to  
— Select the timer 0 operating mode (interval timer)  
— Select the timer 0 input clock frequency  
— Clear the timer 0 counter, T0CNT  
— Enable the timer 0 overflow interrupt or timer 0 match interrupt  
— Clear timer 0 match interrupt pending conditions  
T0CON is located in set 1, at address D2H, and is read/write addressable using Register addressing mode.  
A reset clears T0CON to '00H'. This sets timer 0 to normal interval timer mode, selects an input clock frequency  
of fOSC/4096, and disables all timer 0 interrupts. You can clear the timer 0 counter at any time during normal  
operation by writing a "1" to T0CON.3.  
The timer 0 overflow interrupt (T0OVF) is interrupt level IRQ0 and has the vector address FAH. When a timer 0  
overflow interrupt occurs and is serviced by the CPU, the pending condition is cleared automatically by hardware.  
To enable the timer 0 match interrupt (IRQ0, vector FCH), you must write T0CON.1 to "1". To detect a match  
interrupt pending condition, the application program polls T0CON.0. When a "1" is detected, a timer 0 match  
interrupt is pending. When the interrupt request has been serviced, the pending condition must be cleared by  
software by writing a "0" to the timer 0 interrupt pending bit, T0CON.0.  
10-3  
BASIC TIMER and TIMER 0  
S3P80C5/C80C5/C80C8  
Timer 0 Control Register (T0CON)  
D2H, Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Timer 0 match interrupt pending bit:  
0 = No interrupt pending  
Timer 0 input clock selection bits:  
00 = fOSC/4096  
0 = Clear pending bit (write)  
1 = Interrupt is pending  
01 = fOSC/256  
10 = fOSC/8  
11 = External clock (P2.1/T0CK)  
Timer 0 match interrupt enable bit:  
0 = Disable interrupt  
1 = Enable interrupt  
Timer 0 operating mode selection bits:  
00 = Interval mode  
01 = Overflow mode (OVF interrupt can occur)  
10 = Overflow mode (OVF interrupt can occur)  
11 = PWM mode (OVF interrupt can occur)  
Timer 0 overflow interrupt enable bit:  
0 = Disable overflow interrupt  
1 = Enable overflow interrupt  
Timer 0 counter clear bit:  
0 = No effect  
1 = Clear the timer 0 counter (when write)  
Figure 10-2. Timer 0 Control Register (T0CON)  
10-4  
S3P80C5/C80C5/C80C8  
BASIC TIMER AND TIMER 0  
TIMER 0 FUNCTION DESCRIPTION  
Timer 0 Interrupts (IRQ0, Vectors FAH and FCH)  
The timer 0 module can generate two interrupts: the timer 0 overflow interrupt (T0OVF), and the timer 0 match  
interrupt (T0INT). T0OVF is interrupt level IRQ0, vector FAH. T0INT also belongs to interrupt level IRQ0, but is  
assigned the separate vector address, FCH.  
A timer 0 overflow interrupt pending condition is automatically cleared by hardware when it has been serviced.  
The T0INT pending condition must, however, be cleared by the application’s interrupt service routine by writing a  
"0" to the T0CON.0 interrupt pending bit.  
Interval Timer Mode  
In interval timer mode, a match signal is generated when the counter value is identical to the value written to the  
T0 reference data register, T0DATA. The match signal generates a timer 0 match interrupt (T0INT, vector FCH)  
and clears the counter.  
If, for example, you write the value ‘10H’ to T0DATA and ‘0BH’ to T0CON, the counter will increment until it  
reaches ‘10H’. At this point, the T0 interrupt request is generated, the counter value is reset, and counting  
resumes. With each match, the level of the signal at the timer 0 output pin is inverted (see Figure 10-3).  
IRQ0(INT)  
Pending  
(T0CON.0)  
Interrupt  
Enable/Disable  
(T0CON.1)  
R (Clear)  
CLK  
Counter  
Match  
Comparator  
Buffer Register  
CTL  
P2.0  
T0CON.5  
T0CON.4  
Match Signal  
T0CON.3  
Data Register  
Figure 10-3. Simplified Timer 0 Function Diagram: Interval Timer Mode  
10-5  
BASIC TIMER and TIMER 0  
S3P80C5/C80C5/C80C8  
Pulse Width Modulation Mode  
Pulse width modulation (PWM) mode lets you program the width (duration) of the pulse that is output at the  
T0PWM pin. As in interval timer mode, a match signal is generated when the counter value is identical to the  
value written to the timer 0 data register. In PWM mode, however, the match signal does not clear the counter.  
Instead, it runs continuously, overflowing at ‘FFH’, and then continues incrementing from ‘00H’.  
Although you can use the match signal to generate a timer 0 overflow interrupt, interrupts are not typically used  
in PWM-type applications. Instead, the pulse at the T0PWM pin is held to Low level as long as the reference  
data value is less than or equal to ( £ ) the counter value and then the pulse is held to High level for as long as  
the data value is greater than ( > ) the counter value. One pulse width is equal to tCLK ´ 256 (see Figure 11-4).  
IRQ0(T0INT)  
PND (T0CON.0)  
Interrupt  
Enable/Disable  
(T0CON.1)  
CLK  
Counter  
IRQ0 (T0OVF)  
CTL  
High level when  
data > counter;  
Match  
P2.0/  
Comparator  
Buffer Register  
T0PWM Low level when  
_
data < counter  
T0CON.5  
T0CON.4  
Match Signal  
T0CON.3  
T0OVF  
Data Register  
NOTE: Interrupts are usually not used when timer 0 is configurared to operate in PWM mode  
Figure 10-4. Simplified Timer 0 Function Diagram: PWM Mode  
10-6  
S3P80C5/C80C5/C80C8  
BASIC TIMER AND TIMER 0  
Bit 1  
RESET  
or Stop  
Basic Timer Control Register  
(Write '1010xxxxB' to disable)  
Bits 3,2  
MUX  
Data Bus  
Clear  
1/4096  
RESET  
8-Bit Basic Counter  
(Read-Only)  
1/1024  
1/128  
OVF  
DIV  
R
XIN  
Bit 2  
Bit 0  
Bits 7,6  
MUX  
OVF  
Bit 3  
Clear  
Data Bus  
1/4096  
1/1024  
1/128  
R
8-Bit Up-Counter  
(Read-Only)  
DIV  
R
(2)  
Match  
T0CON.0  
PND  
P2.1/T0CK  
8-Bit Comparator  
Bit 1  
T0INT  
T0PWM  
P2.0  
Timer 0 Buffer Reg  
Bits 5,4  
Match Signal  
T0CON.3  
T0OVF  
Basic Timer Control Register  
Timer 0 Control Register  
Timer 0 Data Register  
(Read/Write)  
Data Bus  
NOTES:  
1. During a power-on reset operation, the CPU is idle during the required oscillation  
stabilizatiin interval (until bit 4 of the basic timer counter overflows).  
2. It is available only in using interval mode.  
Figure 10-5. Basic Timer and Timer 0 Block Diagram  
10-7  
BASIC TIMER and TIMER 0  
S3P80C5/C80C5/C80C8  
F
PROGRAMMING TIP — Configuring the Basic Timer  
This example shows how to configure the basic timer to sample specifications:  
ORG  
0100H  
RESET  
DI  
; Disable all interrupts  
LD  
BTCON,#03H  
CLKCON,#18H  
SYM  
; Enable the watchdog timer  
; Non-divided clock  
LD  
CLR  
CLR  
; Disable global and fast interrupts  
; Stack pointer low byte ¬ "0"  
; Stack area starts at 0FFH  
SPL  
SRP  
#0C0H  
; Set register pointer ¬ 0C0H  
EI  
; Enable interrupts  
MAIN  
LD  
BTCON,#02H  
; Enable the watchdog timer  
; Basic timer clock: fOSC/4096  
; Clear basic timer counter  
NOP  
NOP  
JP  
T,MAIN  
10-8  
S3P80C5/C80C5/C80C8  
BASIC TIMER AND TIMER 0  
F
Programming Tip — Programming Timer 0  
This sample program sets timer 0 to interval timer mode, sets the frequency of the oscillator clock, and  
determines the execution sequence which follows a timer 0 interrupt. The program parameters are as follows:  
— Timer 0 is used in interval mode; the timer interval is set to 4 milliseconds  
— Oscillation frequency is 4 MHz  
— General register 60H (page 0) ¬ 60H + 61H + 62H + 63H + 64H (page 0) is executed after a timer 0  
interrupt  
ORG  
0FAH  
; Timer 0 overflow interrupt  
; Timer 0 match/capture interrupt  
0100H  
VECTOR  
ORG  
T0OVER  
0FCH  
T0INT  
ORG  
VECTOR  
RESET  
LD  
DI  
; Disable all interrupts  
BTCON,#0AAH  
CLKCON,#18H  
SYM  
; Disable the watchdog timer  
; Select non-divided clock  
; Disable global and fast interrupts  
; Stack pointer low byte ¬ "0"  
; Stack area starts at 0FFH  
LD  
CLR  
CLR  
SPL  
LD  
T0CON,#4BH  
; Write '01001011B'  
; Input clock is fOSC/256  
; Interval timer mode  
; Enable the timer 0 interrupt  
; Disable the timer 0 overflow interrupt  
; Set timer interval to 4 milliseconds  
; (4 MHz/256) ¸ (93 + 1) = 0.166 kHz (6 ms)  
LD  
T0DATA,#5DH  
#0C0H  
SRP  
; Set register pointer ¬ 0C0H  
EI  
; Enable interrupts  
10-9  
BASIC TIMER and TIMER 0  
S3P80C5/C80C5/C80C8  
F
PROGRAMMING TIP — Programming Timer 0 (Continued)  
T0INT  
PUSH  
SRP0  
INC  
RP0  
; Save RP0 to stack  
; RP0 ¬ 60H  
#60H  
R0  
; R0 ¬ R0 + 1  
ADD  
ADC  
ADC  
R2,R0  
R3,R2  
R4,R0  
; R2 ¬ R2 + R0  
; R3 ¬ R3 + R2 + Carry  
; R4 ¬ R4 + R0 + Carry  
CP  
R0,#32H  
JR  
; 50 ´ 6 = 300 ms  
ULT,NO_300MS_SET  
R1.2  
BITS  
; Bit setting (61.2H)  
NO_300MS_SET:  
LD  
T0CON,#42H  
RP0  
; Clear pending bit  
POP  
; Restore register pointer 0 value  
T0OVER  
IRET  
; Return from interrupt service routine  
10-10  
S3P80C5/C80C5/C80C8  
TIMER 1  
11 TIMER 1  
OVERVIEW  
The S3C80C5/C80C8 microcontroller has a 16-bit timer/counter called timer 1 (T1). For universal remote  
controller applications, timer 1 can be used to generate the envelope pattern for the remote controller signal.  
Timer 1 has the following components:  
— One control register, T1CON (set 1, FAH, R/W)  
— Two 8-bit counter registers, T1CNTH and T1CNTL (set 1, F6H and F7H, read-only)  
— Two 8-bit reference data registers, T1DATAH and T1DATAL (set 1, F8H and F9H, R/W)  
— A 16-bit comparator  
You can select one of the following clock sources as the timer 1 clock:  
— Oscillator frequency (fOSC) divided by 4, 8, or 16  
— Internal clock input from the counter A module (counter A flip/flop output)  
You can use Timer 1 in two ways:  
— As a normal free run counter, generating a timer 1 overflow interrupt (IRQ1, vector F4H) at programmed time  
intervals.  
— To generate a timer 1 match interrupt (IRQ1, vector F6H) when the 16-bit timer 1 count value matches the  
16-bit value written to the reference data registers.  
In the S3C80C5/C80C8 interrupt structure, the timer 1 overflow interrupt has higher priority than the timer 1  
match.  
11-1  
TIMER 1  
S3P80C5/C80C5/C80C8  
TIMER 1 OVERFLOW INTERRUPT  
Timer 1 can be programmed to generate an overflow interrupt (IRQ1, F4H) whenever an overflow occurs in the  
16-bit up counter. When you set the timer 1 overflow interrupt enable bit, T1CON.2, to “1”, the overflow interrupt  
is generated each time the 16-bit up counter reaches ‘FFFFH’. After the interrupt request is generated, the  
counter value is automatically cleared to ‘00H’ and up counting resumes. By writing a “1” to T1CON.3, you can  
clear/reset the 16-bit counter value at any time during program operation.  
TIMER 1 MATCH INTERRUPT  
Timer 1 can also be used to generate a match interrupt (IRQ1, vector F6H) whenever the 16-bit counter value  
matches the value that is written to the timer 1 reference data registers, T1DATAH and T1DATAL. When a  
match condition is detected by the 16-bit comparator, the match interrupt is generated, the counter value is  
cleared, and up counting resumes from ‘00H’.  
In match mode, program software can poll the timer 1 match interrupt pending bit, T1CON.0, to detect when a  
timer 1 match interrupt pending condition exists (T1CON.0 = "1"). When the interrupt request is acknowledged by  
the CPU and the service routine starts, the interrupt service routine for vector F6H must clear the interrupt  
pending condition by writing a “0” to T1CON.0.  
IRQ1(T1INT)  
Pending  
(T1CON.0)  
Interrupt  
Enable/Disable  
(T1CON.2)  
R (Clear)  
Match  
16-Bit UP Counter  
(Read-Only)  
CLK  
16-Bit Comparator  
CTL  
T1CON.5  
T1CON.4  
Timer 1 High/Low  
Buffer Register  
Match Signal  
T1CON.3  
Timer 1 Data High/Low  
Buffer Register  
Figure 11-1. Simplified Timer 1 Function Diagram: Interval Timer Mode  
11-2  
S3P80C5/C80C5/C80C8  
TIMER 1  
T1CON.2  
T1CON.7-.6  
OVF  
IRQ1  
CAOF (T-F/F)  
fOSC/4  
T1CON.3  
Clear  
16-Bit Up-Counter  
(Read-Only)  
MUX  
R
fOSC/8  
Match(note)  
fOSC/16  
M
U
X
16-Bit Comparator  
T1CON.1  
T1CON.5-.4  
T1CON.0  
IRQ1  
Timer 1 High/Low  
Buffer Register  
T1CON.3  
Match Signal  
T1OVF  
Timer 1 Data  
High/Low Register  
Data Bus  
NOTES: Match signal is occured only in interval mode.  
Figure 11-2. Timer 1 Block Diagram  
11-3  
TIMER 1  
S3P80C5/C80C5/C80C8  
TIMER 1 CONTROL REGISTER (T1CON)  
The timer 1 control register, T1CON, is located in set 1, FAH, and is read/write addressable. T1CON contains  
control settings for the following T1 functions:  
— Timer 1 input clock selection  
— Timer 1 operating mode selection  
— Timer 1 16-bit down counter clear  
— Timer 1 overflow interrupt enable/disable  
— Timer 1 match interrupt enable/disable  
— Timer 1 interrupt pending control (read for status, write to clear)  
A reset operation clears T1CON to ‘00H’, selecting f  
divided by 4 as the T1 clock, configuring timer 1 as a  
normal interval timer, and disabling the timer 1 interrupts.  
OSC  
Timer 1 Control Register (T1CON)  
FAH, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Timer 1 match interrupt pending bit:  
0 = No interrupt pending  
Timer 1 input clock selection bits:  
00 = fOSC/4  
0 = Clear pending bit (write)  
1 = Interrupt is pending  
01 = fOSC/8  
10 = fOSC/16  
11 = Internal clock (T-F/F)  
Timer 1 match interrupt enable bit:  
0 = Disable interrupt  
1 = Enable interrupt  
Timer 1 operating mode selection bits:  
00 = Interval mode  
01 = Overflow mode (OVF interrupt can occur)  
01 = Overflow mode (OVF interrupt can occur)  
01 = Overflow mode (OVF interrupt can occur)  
Timer 1 overflow interrupt enable bit:  
0 = Disable overflow interrupt  
1 = Enable overflow interrupt  
Timer 1 counter clear bit:  
0 = No effect  
1 = Clear the timer 1 counter (when write)  
Figure 11-3. Timer 1 Control Register (T1CON)  
11-4  
S3P80C5/C80C5/C80C8  
TIMER 1  
Timer 1 Counter High-Byte Register (T1CNTH)  
F6H, Set 1, R  
MSB  
MSB  
MSB  
MSB  
.7  
.7  
.7  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Reset Value : 00H  
Timer 1 Counter Low-Byte Register (T1CNTL)  
F7H, Set 1, R  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Reset Value : 00H  
Timer 1 Data High-Byte Register (T1DATAH)  
F8H, Set 1, R/W  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Reset Value : FFh  
Timer 1 Data Low-Byte Register (T1DATAL)  
F9H, Set 1, R/W  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Reset Value : FFh  
Figure 11-4. Timer 1 Registers  
11-5  
TIMER 1  
S3P80C5/C80C5/C80C8  
NOTES  
11-6  
S3P80C5/C80C5/C80C8  
COUNTER A  
12 COUNTER A  
OVERVIEW  
The S3P80C5/C80C5/C80C8 microcontroller has an 8-bit counter called counter A. Counter A, which can be  
used to generate the carrier frequency, has the following components (see Figure 12-1):  
— Counter A control register, CACON  
— 8-bit down counter with auto-reload function  
— Two 8-bit reference data registers, CADATAH and CADATAL  
Counter A has two functions:  
— As a normal interval timer, generating a counter A interrupt (IRQ4, vector ECH) at programmed time  
intervals.  
— To supply a clock source to the 16-bit timer/counter module, timer 1, for generating the timer 1 overflow  
interrupt.  
12-1  
COUNTER A  
S3P80C5/C80C5/C80C8  
CACON.6-.7  
DIV 1  
DIV 2  
DIV 4  
DIV 8  
8-Bit  
Down Counter  
CACON.0  
(CAOF)  
CLK  
To Other Block  
(P3.1/REM)  
MUX  
CACON.3  
Repeat  
Control  
MUX  
Interrupt  
Control  
IRQ4  
(CAINT)  
INT.GEN.  
Counter A Data  
Low Byte Register  
fOSC  
CACON.2  
CACON.4-.5  
Counter A Data  
High Byte Register  
Data Bus  
NOTES: The value of the CADATAL register is loaded into the 8-bit counter when the operaion of the counter A  
Starts. If a borrow occurs in the counter, the value of the CADATAH register is loaded into the 8-bit  
counter. However, if the next borrow ovvurs, the value of the CADATAL register is loaded into the 8-bit  
counter.  
Figure 12-1. Counter A Block Diagram  
12-2  
S3P80C5/C80C5/C80C8  
COUNTER A  
COUNTER A CONTROL REGISTER (CACON)  
The counter A control register, CACON, is located in set 1, bank 0, F3H, and is read/write addressable. CACON  
contains control settings for the following functions (see Figure 12-2):  
— Counter A clock source selection  
— Counter A interrupt enable/disable  
— Counter A interrupt pending control (read for status, write to clear)  
— Counter A interrupt time selection  
Counter A Control Register (CACON)  
F3H, Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Counter A input clock  
selection bits:  
00 = fOSC  
Counter A output flip-flop  
control bit:  
0 = T-FF is Low  
1 = T-FF is High  
01 = fOSC/2  
10 = fOSC/4  
11 = fOSC/8  
Counter A mode selection bit:  
0 = One-shot mode  
1 = Repeating mode  
Counter A interrupt selection bits:  
00 = Elapsed time for Low data value  
01 = Elapsed time for High data value  
10 = Elapsed time for Low and High  
data values  
Counter A start/stop bit:  
0 = Stop counter A  
1 = Start counter A  
11 = Invalid setting  
Counter A interrupt enable bit:  
0 = Disable interrupt  
1 = Enable interrupt  
Figure 12-2. Counter A Control Register (CACON)  
12-3  
COUNTER A  
S3P80C5/C80C5/C80C8  
Counter A Data High-Byte Register (CADATAH)  
F4H, Set 1, R/W  
MSB  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Reset Value : FFh  
Counter A Data Low-Byte Register (CADATAL)  
F5H, Set 1, R/W  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Reset Value : FFh  
Figure 12-3. Counter A Registers  
COUNTER A PULSE WIDTH CALCULATIONS  
tHIGH  
tLOW  
tLOW  
To generate the above repeated waveform consisted of low period time, tLOW, and high period time, tHIGH  
.
When CAOF = 0,  
tLOW = (CADATAL + 2) x 1/fxx, 0H < CADATAL < 100H, where fx = The selected clock.  
tHIGH = (CADATAH + 2) x 1/fxx, 0H < CADATAH < 100H, where fx = The selected clock.  
When CAOF = 1,  
tLOW = (CADATAH + 2) x 1/fxx, 0H < CADATAH < 100H, where fx = The selected clock.  
tHIGH = (CADATAL + 2) x 1/fxx, 0H < CADATAL < 100H, where fx = The selected clock.  
To make tLOW = 24 us and tHIGH = 15 us. fOSC = 4 MHz, fx = 4 MHz/4 = 1 MHz  
[Method 1] When CAOF = 0,  
tLOW = 24 us = (CADATAL + 2) /fx = (CADATAL + 2) ´ 1us, CADATAL = 22.  
tHIGH = 15 us = (CADATAH + 2) /fx = (CADATAH + 2) ´ 1us, CADATAH = 13.  
[Method 2] When CAOF = 1,  
tHIGH = 15 us = (CADATAL + 2) /fx = (CADATAL + 2) ´ 1us, CADATAL = 13.  
tLOW = 24 us = (CADATAH + 2) /fx = (CADATAH + 2) ´ 1us, CADATAH = 22.  
12-4  
S3P80C5/C80C5/C80C8  
COUNTER A  
0H  
Counter A  
Clock  
CAOF = '0'  
CADATAL = 01-FFH  
CADATAH = 001H  
High  
Low  
Low  
High  
CAOF = '0'  
CADATAL = 00H  
CADATAH = 01-FFH  
CAOF = '0'  
CADATAL = 00H  
CADATAH = 00H  
CAOF = '1'  
CADATAL = 00H  
CADATAH = 00H  
0H  
Counter A  
Clock  
CAOF = '0'  
CADATAL = DEH  
CADATAH = 1EH  
20H  
20H  
E0H  
E0H  
CAOF = '0'  
CADATAL = DEH  
CADATAH = 1EH  
CAOF = '1'  
CADATAL = 7EH  
CADATAH = 7EH  
80H  
80H  
80H  
80H  
CAOF = '0'  
CADATAL = 7EH  
CADATAH = 7EH  
Figure 12-4. Counter A Output flip-flop Waveforms in Repeat Mode  
12-5  
COUNTER A  
S3P80C5/C80C5/C80C8  
F
PROGRAMMING TIP — To Generate 38 kHz, 1/3duty Signal Through P2.1  
This example sets Counter A to the repeat mode, sets the oscillation frequency as the Counter A clock source,  
and CADATAH and CADATAL to make a 38 kHz,1/3 Duty carrier frequency. The program parameters are:  
8.795 ms  
17.59  
ms  
37.9 kHz 1/3 Duty  
— Counter A is used in repeat mode  
— Oscillation frequency is 4 MHz (0.25 ms)  
— CADATAH = 8.795 ms / 0.25 ms = 35.18, CADATAL = 17.59 ms / 0.25 ms = 70.36  
— Set P2.1 C-MOS push-pull output and CAOF mode.  
ORG  
0100H  
; Reset address  
START  
DI  
LD  
LD  
CADATAL,#(70-2)  
CADATAH,#(35-2)  
; Set 17.5 ms  
; Set 8.75 ms  
;
LD  
LD  
P2CON,#10101010B  
CACON,#00000110B  
; Set P2 to C-MOS push-pull output.  
; Set P2.1 to REM output  
;
; Clock Source ¬ fOSC  
; Disable Counter A interrupt.  
; Select repeat mode for Counter A.  
; Start Counter A operation.  
; Set Counter A Output Flip-flop(CAOF) high.  
;
LD  
P2,#20H  
; Set P2.5(Carrier On/Off) to high.  
; This command generates 38 kHz, 1/3duty pulse signal  
; through P2.1  
;
12-6  
S3P80C5/C80C5/C80C8  
COUNTER A  
F
PROGRAMMING TIP — To Generate a One Pulse Signal Through P2.1  
This example sets Counter A to the one shot mode, sets the oscillation frequency as the Counter A clock source,  
and CADATAH and CADATAL to make a 40 ms width pulse. The program parameters are:  
40 ms  
— Counter A is used in one shot mode  
— Oscillation frequency is 4 MHz (1 clock = 0.25 ms)  
— CADATAH = 40 ms / 0.25 ms = 160, CADATAL = 1  
— Set P2.1 C-MOS push-pull output and CAOF mode.  
ORG  
DI  
0100H  
; Reset address  
START  
LD  
LD  
CADATAH,# (160-2)  
CADATAL,# 1  
; Set 40 ms  
; Set any value except 00H  
;
LD  
LD  
P2CON,#10101010B  
CACON,#00000001B  
; Set P2 to C-MOS push-pull output.  
; Set P2.1 to REM output  
;
; Clock Source ¬ fOSC  
; Disable Counter A interrupt.  
; Select one shot mode for Counter A.  
; Stop Counter A operation.  
; Set Counter A Output flip-flop (CAOF) high  
; Set P2.5(Carrier On/Off) to high.  
LD  
P2,#20H  
Pulse_out: LD  
CACON,#00000101B  
; Start Counter A operation  
; to make the pulse at this point.  
; After the instruction is executed, 0.75 ms is required  
; before the falling edge of the pulse starts.  
12-7  
COUNTER A  
S3P80C5/C80C5/C80C8  
NOTES  
12-8  
S3P80C5/C80C5/C80C8  
ELECTRICAL DATA  
13 ELECTRICAL DATA  
OVERVIEW  
In this section, S3P80C5/C80C5/C80C8 electrical characteristics are presented in tables and graphs. The  
information is arranged in the following order:  
— Absolute maximum ratings  
— D.C. electrical characteristics  
— Data retention supply voltage in Stop mode  
— Stop mode release timing when initiated by a Reset  
— I/O capacitance  
— A.C. electrical characteristics  
— Input timing for external interrupts (port 0)  
— Oscillation characteristics  
— Oscillation stabilization time  
13-1  
ELECTRICAL DATA  
S3P80C5/C80C5/C80C8  
Table 13-1. Absolute Maximum Ratings  
°
(TA = 25 C)  
Parameter  
Symbol  
Conditions  
Rating  
Unit  
VDD  
Supply voltage  
– 0.3 to + 6.5  
– 0.3 to VDD + 0.3  
– 0.3 to VDD + 0.3  
– 18  
V
VIN  
VO  
Input voltage  
All output pins  
V
V
Output voltage  
Output current High  
IOH  
One I/O pin active  
mA  
All I/O pins active  
One I/O pin active  
– 60  
+ 30  
IOL  
Output current Low  
mA  
Total pin current for ports 0, 1, and 2  
+ 100  
+ 40  
Total pin current for port 3  
°
C
TA  
Operating  
– 40 to + 85  
temperature  
°
C
TSTG  
Storage  
– 65 to + 150  
temperature  
Table 13-2. D.C. Electrical Characteristics  
°
°
(TA = – 40 C to + 85 C, VDD = 2.0 V to 3.6 V)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VDD  
fOSC 4MHz  
Operating Voltage  
1.7  
3.6  
V
=
(Instruction clock = 0.67 MHz)  
VIH1  
All input pins except VIH2  
and VIH3  
0.8 VDD  
VDD  
Input High  
voltage  
V
V
V
VIH2  
VIL1  
X
IN  
VDD – 0.3  
0
VDD  
All input pins except VIL2  
and VIL3  
0.2 VDD  
Input Low voltage  
VIL2  
XIN  
0.3  
VOH1  
VDD= 2.4 V, I  
= – 6 mA  
VDD – 0.7  
Output High  
voltage  
OH  
Port 2.1 only, TA = 25 C  
°
VOH2  
VDD = 2.4 V, IOH = – 2.2mA VDD 0.7  
-
°
Port 2.0, 2.2, TA = 25 C  
VOH3  
VDD = 2.4 V, IOH = – 1 mA  
All output pins except Port2,  
VDD 1.0  
-
°
TA = 25 C  
13-2  
S3P80C5/C80C5/C80C8  
ELECTRICAL DATA  
Table 13-2. D.C. Electrical Characteristics (Continued)  
°
°
(TA = – 40 C to + 85 C, VDD = 2.0 V to 3.6 V)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VOL1  
VDD = 2.4 V, IOL = 12 mA, port  
Output Low  
voltage  
0.4  
0.5  
°
2.1 only, TA = 25 C  
VOL2  
VOL3  
ILIH1  
VDD = 2.4 V, IOL = 5 mA  
0.4  
0.4  
0.5  
1.0  
1
°
Port 2.0,2.2, TA = 25 C  
IOL = 1 mA  
°
Ports 0 and 1, TA = 25 C  
VIN = VDD  
All input pins except XIN and  
XOUT  
Input High  
leakage current  
µA  
µA  
ILIH2  
ILIL1  
VIN = VDD, XIN and XOUT  
20  
VIN = 0 V  
Input Low  
– 1  
leakage current  
All input pins except XIN, XOUT  
ILIL2  
VIN = 0 V  
– 20  
XIN and XOUT  
ILOH  
ILOL  
RL1  
VOUT = VDD  
Output High  
leakage current  
1
µA  
µA  
All output pins  
VOUT = 0 V  
Output Low  
leakage current  
– 1  
95  
All output pins  
VDD = 2.4V, VIN = 0 V;  
Pull-up resistors  
44  
55  
KW  
°
TA = 25 C , Ports 0-2  
IDD1  
IDD2  
Supply current  
(note)  
2.6  
0.7  
5
mA  
VDD = 3.6 V ± 10%  
4-MHz crystal  
Idle mode;  
2.0  
VDD = 3.6 V ± 10 %  
4-MHz crystal  
IDD3  
Stop mode;  
VDD = 3.6 V  
1
6
uA  
NOTE: Supply current does not include current drawn through internal pull-up resistors or external output current loads.  
13-3  
ELECTRICAL DATA  
S3P80C5/C80C5/C80C8  
Table 13-3. Characteristics of Low Voltage Detect circuit  
°
°
(TA = – 40 C to + 85 C)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Hysteresys Voltage of LVD  
(Slew Rate of LVD)  
30  
300  
mV  
DV  
VLVD  
Low level detect voltage  
(S3C80C5/C80C8)  
1.70  
1.90  
2.1  
V
Table 13-4. Data Retention Supply Voltage in Stop Mode  
°
°
(TA = – 40 C to + 85 C)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VDDDR  
Data retention supply  
voltage  
1.0  
3.6  
V
IDDDR  
VDDDR = 1.0 V  
Stop mode  
Data retention supply  
current  
1
µA  
Table 13-5. Input/output Capacitance  
(TA = – 40 C to + 85 C, VDD = 0 V)  
°
°
Parameter  
Input  
capacitance  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
CIN  
f = 1 MHz; unmeasured pins  
are connected to VSS  
10  
pF  
COUT  
CIO  
Output  
capacitance  
I/O capacitance  
Table 13-6. A.C. Electrical Characteristics  
°
°
(TA = – 40 C to + 85 C)  
Parameter  
Symbol  
tINTH  
tINTL  
Conditions  
Min  
Typ  
Max  
Unit  
P0.0–P0.7, VDD 3.6  
=
Interrupt input,  
High, Low width  
200  
300  
ns  
,
V
13-4  
S3P80C5/C80C5/C80C8  
ELECTRICAL DATA  
tINTL  
tINTH  
0.8 VDD  
0.2 VDD  
NOTE:  
The unit tCPU means one CPU clock period.  
Figure 13-1. Input Timing for External Interrupts (Port 0)  
Table 13-7. Oscillation Characteristics  
°
°
(TA = – 40 C + 85 C)  
Oscillator Clock Circuit  
Crystal  
Conditions  
Min  
Typ  
Max  
Unit  
C1  
CPU clock oscillation  
frequency  
1
4
MHz  
XIN  
XOUT  
C2  
C1  
Ceramic  
CPU clock oscillation  
frequency  
1
1
4
4
MHz  
MHz  
XTIN  
XTOUT  
C2  
XIN input frequency  
External clock  
External  
Clock  
XIN  
Open Pin  
OUT  
X
13-5  
ELECTRICAL DATA  
S3P80C5/C80C5/C80C8  
Table 13-8. Oscillation Stabilization Time  
°
°
(TA = – 40 C + 85 C, VDD = 3.6 V)  
Oscillator  
Test Condition  
Min  
Typ  
Max  
Unit  
fOSC > 400 kHz  
Main crystal  
20  
ms  
Oscillation stabilization occurs when VDD is equal  
to the minimum oscillator voltage range.  
XIN input High and Low width (tXH, tXL)  
Main ceramic  
10  
ms  
External clock  
(main system)  
25  
500  
ns  
(1)  
tWAIT  
216/  
fOSC  
Oscillator  
stabilization  
wait time  
ms  
when released by a reset  
(2)  
ms  
tWAIT  
when released by an interrupt  
NOTES:  
1.  
f
is the oscillator frequency.  
OSC  
2. The duration of the oscillation stabilization time (t  
in the basic timer control register, BTCON.  
) when it is released by an interrupt is determined by the setting  
WAIT  
Instruction  
Clock  
Instruction  
Clock  
1.33 MHz  
8 MHz  
B
1.00 MHz  
6 MHz  
4 kHz  
670 kHz  
500 kHz  
A
250 kHz  
8.32 kHz  
400 kHz  
1
2
3
4
5
6
7
Supply Voltage (V)  
Instruction Clock = 1/6n x oscillator frequency (n = 1, 2, 8, 16)  
A 1.7 V: 4 MHz  
b 2.0 V: 8 MHz  
Figure 13-2. Operating Voltage Range of S3P80C5/C80C5/C80C8  
13-6  
S3P80C5/C80C5/C80C8  
MECHANICAL DATA  
14 MECHANICAL DATA  
OVERVIEW  
The S3P80C5/C80C5/C80C8 microcontroller is currently available in a 24-pin SOP and SDIP package.  
0-8  
#24  
#13  
24-SOP-375  
+ 0.10  
0.15 - 0.05  
#1  
#12  
15.74 MAX  
15.34 ± 0.20  
0.10 MAX  
1.27  
(0.69)  
+ 0.10  
0.38 - 0.05  
NOTE: Dimensions are in millimeters.  
Figure 14-1. 24-Pin SOP Package Mechanical Data  
14-1  
MECHANICAL DATA  
S3P80C5/C80C5/C80C8  
#24  
#13  
0-15  
24-SDIP-300  
#1  
#12  
23.35 MAX  
22.95 ± 0.20  
0.46 ± 0.10  
0.89 ± 0.10  
1.778  
(1.70)  
NOTE: Dimensions are in millimeters.  
Figure 14-2. 24-Pin SDIP Package Mechanical Data  
14-2  
S3C8 SERIES MASK ROM ORDER FORM  
Product description:  
Device Number: S3C80C5  
S3C__________- ___________(write down the ROM code number)  
S3C80C8  
(note)  
Product Order Form:  
Package  
Pellet  
Wafer  
Package Type: __________  
Package Marking (Check One):  
Standard  
Custom A  
(Max 10 chars)  
Custom B  
(Max 10 chars each line)  
@ YWW  
Device Name  
@ YWW  
@ YWW  
Device Name  
SEC  
@ : Assembly site code, Y : Last number of assembly year, WW : Week of assembly  
Delivery Dates and Quantities:  
Deliverable  
ROM code  
Required Delivery Date  
Quantity  
Comments  
Not applicable  
See ROM Selection Form  
Customer sample  
Risk order  
See Risk Order Sheet  
Please answer the following questions:  
For what kind of product will you be using this order?  
F
New product  
Upgrade of an existing product  
Other  
Replacement of an existing product  
If you are replacing an existing product, please indicate the former product name  
(
)
F
What are the main reasons you decided to use a Samsung microcontroller in your product?  
Please check all that apply.  
Price  
Product quality  
Features and functions  
Delivery on time  
Development system  
Used same micom before  
Technical support  
Quality of documentation  
Samsung reputation  
Mask Charge (US$ / Won):  
Customer Information:  
____________________________  
Company Name:  
___________________  
________________________  
(Person placing the order)  
Telephone number  
_________________________  
Signatures:  
__________________________________  
(Technical Manager)  
(For duplicate copies of this form, and for additional ordering information, please contact your local Samsung sales  
representative. Samsung sales offices are listed on the back cover of this book.)  
NOTE : Please one more check whether the selected device is S3C80A4/C80A8/C80A5 or S3C80B4/C80B8/C80B5.  
S3C8 SERIES  
REQUEST FOR PRODUCTION AT CUSTOMER RISK  
Customer Information:  
Company Name:  
Department:  
Telephone Number:  
Date:  
________________________________________________________________  
________________________________________________________________  
__________________________  
__________________________  
Fax: _____________________________  
Risk Order Information:  
Device Number:  
S3C80C5  
S3C80C8  
S3C__________- ___________(write down the ROM code number) (note)  
Package:  
Number of Pins: ____________  
Package Type: _____________________  
Intended Application:  
Product Model Number:  
________________________________________________________________  
________________________________________________________________  
Customer Risk Order Agreement:  
We hereby request SEC to produce the above named product in the quantity stated below. We believe our risk  
order product to be in full compliance with all SEC production specifications and, to this extent, agree to assume  
responsibility for any and all production risks involved.  
Order Quantity and Delivery Schedule:  
Risk Order Quantity:  
Delivery Schedule:  
_____________________ PCS  
Delivery Date (s)  
Quantity  
Comments  
Signatures:  
_______________________________  
(Person Placing the Risk Order)  
_______________________________________  
(SEC Sales Representative)  
(For duplicate copies of this form, and for additional ordering information, please contact your local Samsung  
sales representative. Samsung sales offices are listed on the back cover of this book.)  
NOTE : Please one more check whether the selected device is S3C80A4/C80A8/C80A5 or S3C80B4/C80B8/C80B5.  
S3C80C5/C80C8  
MASK OPTION SELECTION FORM  
Device Number:  
S3C80C5  
S3C80C8  
S3C8__________- ___________(write down the ROM code number) (note)  
Attachment (Check one):  
Diskette  
PROM  
Customer Checksum:  
Company Name:  
________________________________________________________________  
________________________________________________________________  
________________________________________________________________  
Signature (Engineer):  
Please answer the following questions:  
F
Application (Product Model ID: _______________________)  
Audio  
Video  
Telecom  
LCD Databank  
Industrials  
Remocon  
Caller ID  
Home Appliance  
Other  
LCD Game  
Office Automation  
Please describe in detail its application  
(For duplicate copies of this form, and for additional ordering information, please contact your local Samsung  
sales representative. Samsung sales offices are listed on the back cover of this book.)  
NOTE: Please one more check whether the selected device is S3P80A4/P80A8/P80A5 or S3P80B4/P80B8/P80B5.  
S3C8 SERIES OTP FACTORY WRITING ORDER FORM (1/2)  
Product Description:  
Device Number:  
S3P80C5  
S3P8__________- ___________(write down the ROM code number) (note)  
Product Order Form:  
Package  
Pellet  
Wafer  
If the product order form is package:  
Package Type: _____________________  
Package Marking (Check One):  
Standard  
Custom A  
Custom B  
(Max 10 chars)  
(Max 10 chars each line)  
@ YWW  
@ YWW  
@ YWW  
Device Name  
SEC  
Device Name  
@ : Assembly site code, Y : Last number of assembly year, WW : Week of assembly  
Delivery Dates and Quantity:  
ROM Code Release Date  
Required Delivery Date of Device  
Quantity  
Please answer the following questions:  
F
What is the purpose of this order?  
New product development  
Upgrade of an existing product  
Other  
Replacement of an existing microcontroller  
If you are replacing an existing microcontroller, please indicate the former microcontroller name  
(
)
F
What are the main reasons you decided to use a Samsung microcontroller in your product?  
Please check all that apply.  
Price  
Product quality  
Features and functions  
Delivery on time  
Development system  
Used same micom before  
Technical support  
Quality of documentation  
Samsung reputation  
Customer Information:  
Company Name:  
___________________  
Telephone number  
_________________________  
Signatures:  
________________________  
(Person placing the order)  
__________________________________  
(Technical Manager)  
(For duplicate copies of this form, and for additional ordering information, please contact your local Samsung  
sales representative. Samsung sales offices are listed on the back cover of this book.)  
NOTE: Please one more check whether the selected device is S3P80A4/P80A8/P80A5 or S3P80B4/P80B8/P80B5.  
S3C80C5/C80C8  
OTP FACTORY WRITING ORDER FORM (2/2)  
Device Number:  
S3P80C5  
S3P8__________- ___________(write down the ROM code number) (note)  
Customer Checksums:  
Company Name:  
_______________________________________________________________  
________________________________________________________________  
________________________________________________________________  
Signature (Engineer):  
Read Protection (1):  
Yes  
No  
Please answer the following questions:  
F
F
Are you going to continue ordering this device?  
Yes No  
If so, how much will you be ordering? _________________pcs  
Application (Product Model ID: _______________________)  
Audio  
Video  
Telecom  
LCD Databank  
Industrials  
Remocon  
Caller ID  
Home Appliance  
Other  
LCD Game  
Office Automation  
Please describe in detail its application  
__________________________________________________________________________  
NOTES  
1. Once you choose a read protection, you cannot read again the programming code from the EPROM.  
2. OTP Writing will be executed in our manufacturing site.  
3. The writing program is completely verified by a customer. Samsung does not take on any responsibility for errors  
occurred from the writing program.  
(For duplicate copies of this form, and for additional ordering information, please contact your local Samsung  
sales representative. Samsung sales offices are listed on the back cover of this book.)  
NOTE: Please one more check whether the selected device is S3P80A4/P80A8/P80A5 or S3P80B4/P80B8/P80B5.  
BOOK SPINE TEXT  
SAMSUNG Logo S3P80C5/C80C5/C80C8 Microcontrollers User's Manual, Rev. 1 May 2002  
 复制成功!