欢迎访问ic37.com |
会员登录 免费注册
发布采购

TR1004 参数 Datasheet PDF下载

TR1004图片预览
型号: TR1004
PDF下载: 下载PDF文件 查看货源
内容描述: 914.00兆赫混合收发器 [914.00 MHz Hybrid Transceiver]
分类和应用: 电信集成电路
文件页数/大小: 12 页 / 108 K
品牌: RFM [ RF MONOLITHICS, INC ]
 浏览型号TR1004的Datasheet PDF文件第4页浏览型号TR1004的Datasheet PDF文件第5页浏览型号TR1004的Datasheet PDF文件第6页浏览型号TR1004的Datasheet PDF文件第7页浏览型号TR1004的Datasheet PDF文件第8页浏览型号TR1004的Datasheet PDF文件第9页浏览型号TR1004的Datasheet PDF文件第11页浏览型号TR1004的Datasheet PDF文件第12页  
Pin  
Name  
Description  
The transmitter RF output voltage is proportional to the input current to this pin. A series resistor is used to adjust the peak  
transmitter output voltage. 1.5 dBm of output power requires about 450 µA of input current. In the ASK mode, minimum  
output power occurs when the modulation driver sinks about 10 µA of current from this pin. In the OOK mode, input signals  
less than 220 mV completely turn the transmitter oscillator off. Internally, this pin appears to be a diode in series with a  
small resistor. Peak transmitter output power PO for a 3 Vdc supply voltage is approximately:  
P
= 7*(I  
)2, where P is in mW, and the peak modulation current I  
is in mA  
8
TXMOD  
O
TXM  
O
TXM  
A ±5% resistor value is recommended. In the OOK mode, this pin is usually driven with a logic-level data input (unshaped  
data pulses). OOK modulation is practical for data pulses of 30 µs or longer. In the ASK mode, this pin accepts analog  
modulation (shaped or unshaped data pulses). ASK modulation is practical for data pulses 8.7 µs or longer. The resistor  
driving this pin must be low in the receive and power-down (sleep) modes. Please refer to the ASH Transceiver Designer’s  
Guide for additional information on modulation techniques.  
This pin is the receiver low-pass filter bandwidth adjust. The filter bandwidth is set by a resistor R  
ground. The resistor value can range from 330 K to 820 ohms, providing a filter 3 dB bandwidth f  
MHz. The resistor value is determined by:  
between this pin and  
from 4.5 kHz to 1.8  
LPF  
LPF  
R
= 1445/ f , where R  
is in kilohms, and f  
is in kHz  
LPF  
9
LPFADJ  
LPF  
LPF  
LPF  
A ±5% resistor should be used to set the filter bandwidth. This will provide a 3 dB filter bandwidth between f  
and 1.3*  
LPF  
f
with variations in supply voltage, temperature, etc. The filter provides a three-pole, 0.05 degree equiripple phase  
LPF  
response. The peak drive current available from RXDATA increases in proportion to the filter bandwidth setting.  
10  
11  
GND2  
RREF  
GND2 is an IC ground pin. It should be connected to GND1 by a short, low inductance trace.  
RREF is the external reference resistor pin. A 100 K reference resistor is connected between this pin and ground. A ±1%  
resistor tolerance is recommended. It is important to keep the total capacitance between ground, Vcc and this node to less  
than 5 pF to maintain current source stability. If THLD1 and/or THDL2 are connected to RREF through resistor values less  
that 1.5 K, their node capacitance must be added to the RREF node capacitance and the total should not exceed 5 pF.  
THLD2 is the “dB-below-peak” data slicer (DS2) threshold adjust pin. The threshold is set by a 0 to 200 K resistor R  
TH2  
between this pin and RREF. Increasing the value of the resistor decreases the threshold below the peak detector value  
(increases difference) from 0 to 120 mV. For most applications, this threshold should be set at 6 dB below peak, or 60 mV  
for a 50%-50% RF amplifier duty cycle. The value of the THLD2 resistor is given by:  
12  
THLD2  
R
= 1.67*V, where R  
is in kilohms and the threshold V is in mV  
TH2  
TH2  
A ±1% resistor tolerance is recommended for the THLD2 resistor. Leaving the THLD2 pin open disables the dB-below-  
peak data slicer operation.  
The THLD1 pin sets the threshold for the standard data slicer (DS1) through a resistor R  
to RREF. The threshold is  
TH1  
increased by increasing the resistor value. Connecting this pin directly to RREF provides zero threshold. The value of the  
resistor depends on whether THLD2 is used. For the case that THLD2 is not used, the acceptable range for the resistor is  
0 to 100 K, providing a THLD1 range of 0 to 90 mV. The resistor value is given by:  
R
= 1.11*V, where R  
is in kilohms and the threshold V is in mV  
TH1  
TH1  
13  
THLD1  
For the case that THLD2 is used, the acceptable range for the THLD1 resistor is 0 to 200 K, again providing a THLD1  
range of 0 to 90 mV. The resistor value is given by:  
R
= 2.22*V, where R  
is in kilohms and the threshold V is in mV  
TH1  
TH1  
A ±1% resistor tolerance is recommended for the THLD1 resistor. Note that a non-zero DS1 threshold is required for  
proper AGC operation.  
The interval between the falling edge of an ON pulse to the first RF amplifier and the rising edge of the next ON pulse to  
the first RF amplifier t  
is set by a resistor R between this pin and ground. The interval t  
can be adjusted between  
PRI  
PRI  
PR  
0.1 and 5 µs with a resistor in the range of 51 K to 2000 K. The value of R is given by:  
PR  
R
= 404* t  
+ 10.5, where t  
is in µs, and R is in kilohms  
PRI PR  
PR  
PRI  
A ±5% resistor value is recommended. When the PWIDTH pin is connected to Vcc through a 1 M resistor, the RF amplifi-  
ers operate at a nominal 50%-50% duty cycle, facilitating high data rate operation. In this case, the period t from start-  
PRC  
14  
PRATE  
to-start of ON pulses to the first RF amplifier is controlled by the PRATE resistor over a range of 0.1 to 1.1 µs using a resis-  
tor of 11 K to 220 K. In this case the value of R is given by:  
PR  
R
= 198* t  
- 8.51, where t  
is in µs and R is in kilohms  
PRC PR  
PR  
PRC  
A ±5% resistor value should also be used in this case. Please refer to the ASH Transceiver Designer’s Guide for additional  
amplifier duty cycle information. It is important to keep the total capacitance between ground, Vcc and this pin to less than  
5 pF to maintain stability.  
RF Monolithics, Inc.  
RFM Europe  
Phone: (972) 233-2903  
Phone: 44 1963 251383  
Fax: (972) 387-8148  
Fax: 44 1963 251510  
E-mail: info@rfm.com  
http://www.rfm.com  
TR1004-070105  
Page 10 of 12  
©1999 by RF Monolithics, Inc. The stylized RFM logo are registered trademarks of RF Monolithics, Inc.