欢迎访问ic37.com |
会员登录 免费注册
发布采购

RX5002 参数 Datasheet PDF下载

RX5002图片预览
型号: RX5002
PDF下载: 下载PDF文件 查看货源
内容描述: 418.00兆赫混合接收机 [418.00 MHz Hybrid Receiver]
分类和应用: 电信集成电路接收机
文件页数/大小: 10 页 / 74 K
品牌: RFM [ RF MONOLITHICS, INC ]
 浏览型号RX5002的Datasheet PDF文件第2页浏览型号RX5002的Datasheet PDF文件第3页浏览型号RX5002的Datasheet PDF文件第4页浏览型号RX5002的Datasheet PDF文件第5页浏览型号RX5002的Datasheet PDF文件第6页浏览型号RX5002的Datasheet PDF文件第7页浏览型号RX5002的Datasheet PDF文件第9页浏览型号RX5002的Datasheet PDF文件第10页  
Pin Descriptions
Pin
1
2
Name
GND1
VCC1
Description
GND1 is the RF ground pin. GND2 and GND3 should be connected to GND1 by short, low-inductance traces.
VCC1 is the positive supply voltage pin for the receiver base-band circuitry. VCC1 must be bypassed by an RF capacitor,
which may be shared with VCC2. See the description of VCC2 (Pin 16) for additional information.
This pin controls the AGC reset operation. A capacitor between this pin and ground sets the minimum time the AGC will
hold-in once it is engaged. The hold-in time is set to avoid AGC chattering. For a given hold-in time t
AGH
, the capacitor
value C
AGC
is:
C
AGC
= 19.1* t
AGH
, where t
AGH
is in µs and C
AGC
is in pF
A ±10% ceramic capacitor should be used at this pin. The value of C
AGC
given above provides a hold-in time between t
AGH
and 2.65* t
AGH
, depending on operating voltage, temperature, etc. The hold-in time is chosen to allow the AGC to ride
through the longest run of zero bits that can occur in a received data stream. The AGC hold-in time can be greater than the
peak detector decay time, as discussed below. However, the AGC hold-in time should not be set too long, or the receiver
will be slow in returning to full sensitivity once the AGC is engaged by noise or interference. The use of AGC is optional
when using OOK modulation with data pulses of at least 30 µs. AGC operation can be defeated by connecting this pin to
Vcc. Active or latched AGC operation is required for ASK modulation and/or for data pulses of less than 30 µs. The AGC
can be latched on once engaged by connecting a 150 K resistor between this pin and ground, instead of a capacitor. AGC
operation depends on a functioning peak detector, as discussed below. The AGC capacitor is discharged in the receiver
power-down (sleep) mode.
This pin controls the peak detector operation. A capacitor between this pin and ground sets the peak detector attack and
decay times, which have a fixed 1:1000 ratio. For most applications, these time constants should be coordinated with the
base-band time constant. For a given base-band capacitor C
BBO
, the capacitor value C
PKD
is:
C
PKD
= 0.33* C
BBO
, where C
BBO
and C
PKD
are in pF
A ±10% ceramic capacitor should be used at this pin. This time constant will vary between t
PKA
and 1.5* t
PKA
with varia-
tions in supply voltage, temperature, etc. The capacitor is driven from a 200 ohm “attack” source, and decays through a
200 K load. The peak detector is used to drive the “dB-below-peak” data slicer and the AGC release function. The AGC
hold-in time can be extended beyond the peak detector decay time with the AGC capacitor, as discussed above. Where
low data rates and OOK modulation are used, the “dB-below-peak” data slicer and the AGC are optional. In this case, the
PKDET pin and the THLD2 pin can be left unconnected, and the AGC pin can be connected to Vcc to reduce the number
of external components needed. The peak detector capacitor is discharged in the receiver power-down (sleep) mode.
BBOUT is the receiver base-band output pin. This pin drives the CMPIN pin through a coupling capacitor C
BBO
for internal
data slicer operation. The time constant t
BBC
for this connection is:
t
BBC
= 0.064*C
BBO
, where t
BBC
is in µs and C
BBO
is in pF
A ±10% ceramic capacitor should be used between BBOUT and CMPIN. The time constant can vary between t
BBC
and
1.8*t
BBC
with variations in supply voltage, temperature, etc. The optimum time constant in a given circumstance will
depend on the data rate, data run length, and other factors as discussed in the
ASH Transceiver Designer’s Guide.
A com-
mon criteria is to set the time constant for no more than a 20% voltage droop during SP
MAX
. For this case:
C
BBO
= 70*SP
MAX
, where SP
MAX
is the maximum signal pulse width in µs and C
BBO
is in pF
The output from this pin can also be used to drive an external data recovery process (DSP, etc.). The nominal output
impedance of this pin is 1 K. When the receiver RF amplifiers are operating at a 50%-50% duty cycle, the BBOUT signal
changes about 10 mV/dB, with a peak-to-peak signal level of up to 685 mV. For lower duty cycles, the mV/dB slope and
peak-to-peak signal level are proportionately less. The signal at BBOUT is riding on a 1.1 Vdc value that varies somewhat
with supply voltage and temperature, so it should be coupled through a capacitor to an external load. A load impedance of
50 K to 500 K in parallel with no more than 10 pF is recommended. When an external data recovery process is used with
AGC, BBOUT must be coupled to the external data recovery process and CMPIN by separate series coupling capacitors.
The AGC reset function is driven by the signal applied to CMPIN. When the receiver is in power-down (sleep) mode, the
output impedance of this pin becomes very high, preserving the charge on the coupling capacitor.
This pin is the input to the internal data slicers. It is driven from BBOUT through a coupling capacitor. The input impedance
of this pin is 70 K to 100 K.
RXDATA is the receiver data output pin. This pin will drive a 10 pF, 500 K parallel load. The peak current available from
this pin increases with the receiver low-pass filter cutoff frequency. In the power-down (sleep) mode, this pin becomes high
impedance. If required, a 1000 K pull-up or pull-down resistor can be used to establish a definite logic state when this pin
is high impedance. If a pull-up resistor is used, the positive supply end should be connected to a voltage no greater than
Vcc + 200 mV.
This pin may be left unconnected or may be grounded.
3
AGCCAP
4
PKDET
5
BBOUT
6
CMPIN
7
RXDATA
8
NC
RF Monolithics, Inc.
Phone: (972) 233-2903
Fax: (972) 387-8148
RFM Europe
Phone: 44 1963 251383
Fax: 44 1963 251510
©1999 by RF Monolithics, Inc. The stylized RFM logo are registered trademarks of RF Monolithics, Inc.
E-mail: info@rfm.com
http://www.rfm.com
RX5001-062805
Page 8 of 10