欢迎访问ic37.com |
会员登录 免费注册
发布采购

ISL6614CBZA-T 参数 Datasheet PDF下载

ISL6614CBZA-T图片预览
型号: ISL6614CBZA-T
PDF下载: 下载PDF文件 查看货源
内容描述: [2 CHANNEL, HALF BRDG BASED MOSFET DRIVER, PDSO14, ROHS COMPLIANT, PLASTIC, MS-012AB, SOIC-14]
分类和应用: 驱动光电二极管接口集成电路驱动器
文件页数/大小: 12 页 / 602 K
品牌: RENESAS [ RENESAS TECHNOLOGY CORP ]
 浏览型号ISL6614CBZA-T的Datasheet PDF文件第4页浏览型号ISL6614CBZA-T的Datasheet PDF文件第5页浏览型号ISL6614CBZA-T的Datasheet PDF文件第6页浏览型号ISL6614CBZA-T的Datasheet PDF文件第7页浏览型号ISL6614CBZA-T的Datasheet PDF文件第8页浏览型号ISL6614CBZA-T的Datasheet PDF文件第9页浏览型号ISL6614CBZA-T的Datasheet PDF文件第11页浏览型号ISL6614CBZA-T的Datasheet PDF文件第12页  
ISL6614  
the SO14 package is approximately 1W at room temperature,  
while the power dissipation capacity in the QFN packages, with  
an exposed heat escape pad, is around 2W. See “Layout  
Considerations” on page 10 for thermal transfer improvement  
suggestions. When designing the driver into an application, it is  
recommended that the following calculation is used to ensure  
safe operation at the desired frequency for the selected  
MOSFETs. The total gate drive power losses due to the gate  
charge of MOSFETs and the driver’s internal circuitry and their  
corresponding average driver current can be estimated using  
Equations 2 and 3, respectively:  
PVCC  
BOOT  
D
C
GD  
R
HI1  
G
C
DS  
R
R
LO1  
R
GI1  
C
G1  
GS  
Q1  
S
PHASE  
FIGURE 3. TYPICAL UPPER-GATE DRIVE TURN-ON PATH  
(EQ. 2)  
P
= 2 P  
+ 2 P  
+ I VCC  
Qg_Q2 Q  
Qg_TOT  
Qg_Q1  
2
Q
PVCC  
G1  
--------------------------------------  
P
=
=
F  
N  
Qg_Q1  
SW  
Q1  
V
GS1  
PVCC  
D
2
Q
PVCC  
G2  
--------------------------------------  
P
F  
N  
Qg_Q2  
SW  
Q2  
C
V
GD  
GS2  
R
HI2  
G
C
DS  
R
R
LO2  
R
GI2  
C
G2  
Q
N  
Q
N  
Q2  
V
GS2  
G1  
V
Q1  
G2  
----------------------------- -----------------------------  
I
=
+
F  
2 + I  
SW Q  
DR  
GS  
Q2  
GS1  
S
(EQ. 3)  
where the gate charge (Q and Q ) is defined at a particular  
G1  
G2  
and V  
gate to source voltage (V  
) in the corresponding  
FIGURE 4. TYPICAL LOWER-GATE DRIVE TURN-ON PATH  
GS1  
GS2  
MOSFET datasheet; I is the driver’s total quiescent current  
Q
with no load at both drive outputs; N and N are number of  
upper and lower MOSFETs, respectively; PVCC is the drive  
voltages for both upper and lower FETs, respectively. The  
Q1 Q2  
Layout Considerations  
For heat spreading, place copper underneath the IC whether it  
has an exposed pad or not. The copper area can be extended  
beyond the bottom area of the IC and/or connected to buried  
copper plane(s) with thermal vias. This combination of vias for  
vertical heat escape, extended copper plane, and buried  
planes for heat spreading allows the IC to achieve its full  
thermal potential.  
I
VCC product is the quiescent power of the driver without  
Q*  
capacitive load and is typically 200mW at 300kHz.  
The total gate drive power losses are dissipated among the  
resistive components along the transition path. The drive  
resistance dissipates a portion of the total gate drive power  
losses, the rest will be dissipated by the external gate resistors  
Place each channel power component as close to each other  
as possible to reduce PCB copper losses and PCB parasitics:  
shortest distance between DRAINs of upper FETs and  
SOURCEs of lower FETs; shortest distance between DRAINs  
of lower FETs and the power ground. Thus, smaller amplitudes  
of positive and negative ringing are on the switching edges of  
the PHASE node. However, some space in between the power  
components is required for good airflow. The traces from the  
drivers to the FETs should be kept short and wide to reduce the  
inductance of the traces and to promote clean drive signals.  
(R and R ) and the internal gate resistors (R  
G1 G2  
and R )  
GI2  
GI1  
of MOSFETs. Figures 3 and 4 show the typical upper and  
lower gate drives turn-on transition path. The power dissipation  
on the driver can be roughly estimated as:  
P
= 2 P  
+ 2 P  
+ I VCC  
Q
(EQ. 4)  
DR  
DR_UP  
R
DR_LOW  
R
P
Qg_Q1  
HI1  
LO1  
-------------------------------------- --------------------------------------- ---------------------  
P
=
+
DR_UP  
R
+ R  
R
+ R  
EXT1  
2
HI1  
EXT1  
LO1  
R
R
P
Qg_Q2  
HI2  
LO2  
-------------------------------------- --------------------------------------- ---------------------  
P
R
=
+
DR_LOW  
R
+ R  
R
+ R  
EXT2  
2
HI2  
EXT2  
LO2  
R
R
GI1  
GI2  
-------------  
-------------  
= R  
+
R
= R +  
G2  
EXT1  
G1  
EXT2  
N
N
Q1  
Q2  
FN9155 Rev.5.00  
May 5, 2008  
Page 10 of 12