欢迎访问ic37.com |
会员登录 免费注册
发布采购

MMPQ3904 参数 Datasheet PDF下载

MMPQ3904图片预览
型号: MMPQ3904
PDF下载: 下载PDF文件 查看货源
内容描述: 四通道放大器/开关晶体管NPN硅 [Quad Amplifier/Switch Transistor NPN Silicon]
分类和应用: 晶体开关放大器小信号双极晶体管光电二极管PC
文件页数/大小: 4 页 / 45 K
品牌: ONSEMI [ ON SEMICONDUCTOR ]
 浏览型号MMPQ3904的Datasheet PDF文件第1页浏览型号MMPQ3904的Datasheet PDF文件第2页浏览型号MMPQ3904的Datasheet PDF文件第4页  
MMPQ3904
INFORMATION FOR USING THE SO–16 SURFACE MOUNT PACKAGE
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS
Surface mount board layout is a critical portion of the
total design. The footprint for the semiconductor packages
must be the correct size to insure proper solder connection
interface between the board and the package. With the
correct pad geometry, the packages will self align when
subjected to a solder reflow process.
0.060
1.52
0.275
7.0
0.155
4.0
inches
mm
0.024
0.6
0.050
1.270
SO–16
SO–16 POWER DISSIPATION
The power dissipation of the SO–16 is a function of the
pad size. This can vary from the minimum pad size for
soldering to a pad size given for maximum power dissipa-
tion. Power dissipation for a surface mount device is deter-
mined by TJ(max), the maximum rated junction temperature
of the die, R
θJA
, the thermal resistance from the device
junction to ambient, and the operating temperature, TA.
Using the values provided on the data sheet for the SO–16
package, PD can be calculated as follows:
PD =
TJ(max) – TA
R
θJA
SOLDERING PRECAUTIONS
The values for the equation are found in the maximum
ratings table on the data sheet. Substituting these values
into the equation for an ambient temperature TA of 25°C,
one can calculate the power dissipation of the device which
in this case is 1.0 watt.
PD =
150°C – 25°C
125°C/W
= 1.0 watt
The 125°C/W for the SO–16 package assumes the use of
the recommended footprint on a glass epoxy printed circuit
board to achieve a power dissipation of 1.0 watt. There are
other alternatives to achieving higher power dissipation
from the SO–16 package. Another alternative would be to
use a ceramic substrate or an aluminum core board such as
Thermal Clad™. Using a board material such as Thermal
Clad, an aluminum core board, the power dissipation can
be doubled using the same footprint.
The melting temperature of solder is higher than the
rated temperature of the device. When the entire device is
heated to a high temperature, failure to complete soldering
within a short time could result in device failure. There-
fore, the following items should always be observed in
order to minimize the thermal stress to which the devices
are subjected.
Always preheat the device.
The delta temperature between the preheat and
soldering should be 100°C or less.*
When preheating and soldering, the temperature of the
leads and the case must not exceed the maximum
temperature ratings as shown on the data sheet. When
using infrared heating with the reflow soldering
method, the difference shall be a maximum of 10°C.
The soldering temperature and time shall not exceed
260°C for more than 10 seconds.
When shifting from preheating to soldering, the
maximum temperature gradient shall be 5°C or less.
After soldering has been completed, the device should
be allowed to cool naturally for at least three minutes.
Gradual cooling should be used as the use of forced
cooling will increase the temperature gradient and
result in latent failure due to mechanical stress.
Mechanical stress or shock should not be applied
during cooling.
* Soldering a device without preheating can cause exces-
sive thermal shock and stress which can result in damage
to the device.
http://onsemi.com
3